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Mathematical Optimization

(Mathematical) optimization problem

minimize
β

f (x)

subject to gi (x) ≤ bi ,∀i = 1, · · · ,m

x = (x1, · · · , xn): optimization variables

f : Rn → R: objective function

gi : Rn → R, i = 1, · · · ,m: constraint functions

optimal solution x∗ has smallest value of f among all vectors that
satisfy the constraints
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Examples

portfolio optimization
variables: amounts invested in different assets
objective: overall risk or return variance
constraints: budget, max./min. investment per asset, minimum return

data fitting
variables: model parameters
objective: measure of misfit or prediction error
constraints: prior information, parameter limits
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Solving optimization problems

Usually, it’s very difficult to solve the general optimization problem

The methods involve some compromise, e.g., very long computation
time, or not always finding the solution

There are some exceptions that certain problem classes can be
solved efficiently and reliably

least-squares problems
linear programming problems
convex optimization problems
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Least-squares problems

Least-squares problems : Optimize the square loss (distance)
without constraints

minimize
x

||Ax − b||22

solutions
The optimal(analytical) solution is that x∗ = (A>A)−1A>b
There are reliable and efficient algorithms and software, such as lm in
R and scipy.optimize in Python
The computation time of solving the least-squares problems is
proportional to n2k given A ∈ Rk×n; less if structured (i.e., x is
sparse)

using least-squares
Least-squares problems are easy to recognize
There are a few standard techniques increase flexibility (e.g., including
weights, adding regularization terms)
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Linear Programming

Linear Programming: Optimize a linear function subject to linear
inequalities.

maximize
x

c>x

s.t. Ax ≤ b
x ≥ 0

solutions:
no analytical formula, but there are reliable and efficient algorithms
and software
The computation time of solving the linear programs is proportional to
n2m if m > n; less with structure

using linear programming
not as easy to recognize as least-squares problems
there are a few standard tricks used to convert problems into linear
programs. For instance, problems involving l1−norms, piecewise-linear
functions
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Convex optimization problem

The formula with a convex optimization is that

minimize
β

f (x)

subject to gi (x) ≤ bi ,∀i = 1, · · · , k

where both objective and constraint function are convex functions:

gi (αx + βy) ≤ αgi (x) + βgi (y)

if α + β = 1, α ≥ 0, β ≥ 0.

The convex optimization includes least-square problems and linear
programs as special cases
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Solving convex optimization problems

Usually, there is no analytical solution, but with reliable and efficient
algorithms

The computation time proportional to max{n3, n2m,F} where F is
cost of evaluating f and gi and their first and second derivatives

using convex optimization

Sometimes, it’s often difficult to recognize

There are many tricks for transforming problems into convex form.
Surprisingly many problems can be solved via convex optimization
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Solving an optimization: a general perspective

Consider an unconstrained, smooth convex optimization

min
x

f (x)

f is convex and differentiable with dom(f ) = Rn

optimal criterion value f ∗ = min
x

f (x)

a optimal solution x∗

A necessary and sufficient condition for a point x∗ to be optimal is

5f (x∗) = 0

5f (x) is easy to obtain
But, 5f (x) doesn’t have a straightforward solution?
(Batch) Descent Methods: Gradient Descent, Stochastic
Gradient Descent, etc
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Descent Methods

Consider an unconstrained, smooth convex optimization

min
x

f (x)

Find a sequence: x (0), x (1), · · · ,∈ dom(f ), s.t.

lim
k→∞

f (x (k))→ f ∗

descent methods:

x (k+1) = x (k) + t(k)∆x (k), s.t. f (x (k+1)) < f (x (k))

gradient descent: Initialize x (0), repeat:

x (k+1) = x (k) − tk5̇f (x (k)), k = 1, 2, 3, · · ·

Stop at some point (i.e., x no change!)
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Gradient Descent Methods

“Gradient descent is a first-order iterative optimization algorithm for
finding the minimum of a function.”

for each k , based on the Taylor theorem

f (y) ≈ f (x) +5f (x)>(y − x) +
1

2
(y − x)52 f (x)(y − x)

quadratic approximation: replace Hessian matrix 52f by 1
t I

f (y) ≈ f (x) +5f (x)>(y − x) +
1

2t
||y − x ||22

linear approximation to f , proximity term to x , with weight 1
2t

choose next point y = x+ to minimize quadratic approximation:

x+ = x − t 5 f (x)
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Gradient Descent Methods

x+ = arg min
y

f (x) +5f (x)>(y − x) +
1

2t
||y − x ||22
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How to choose step size or learning rate t?

Fixed step size strategy: at each step, the step size or learning rate
tk is fixed, i.e., tk = t for all k = 1, 2, 3, · · · ,
Issues : can diverge if t is too big

Large step size: 10 iterations
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How to choose step size or learning rate t?

Fixed step size strategy: at each step, the step size or learning rate
tk is fixed, i.e., tk = t for all k = 1, 2, 3, · · · ,
Issues : can converge super slow if t is too small

Small step size: 1000 iterations
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How to choose step size or learning rate t?

Fixed step size strategy: at each step, the step size or learning rate
tk is fixed, i.e., tk = t for all k = 1, 2, 3, · · · ,
Issues : can converge fast if t is been carefully chosen

“Just right” step size: 40 iterations
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Backtracking line search: Adaptively choose step size

backtracking line search is one way to adaptively choose the step
size

Algorithm 1: Gradient descent with Backtracking line search

α ∈ (0, 0.5), β ∈ (0, 1);
given a starting point x ∈ dom(f );
initialization, set t = t0;
repeat

determine a descent direction 5f (x);
while f (x − t 5 f (x)) > f (x)− α|| 5 f (x)||22 do

set t = β · t;
end
update x = x − t 5 f (x);

until stopping criterion is satisfied ;

simple and tends to work well in practice (further simplification:
α = 0.5)
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Backtracking (line search) Interpretation

for us
∆x = −5f (x)
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Exact line search: select the best step size

Exact line search is able to choose optimal step size along direction
of negative gradient

t = arg min
s≥0

f (x − s 5 f (x))

Usually not possible to exactly minimize f (x − s 5 f (x))
Approximations to Exact line search are typically not as efficient as
backtracking (not worth it!)

H. Xiao (IFI@GSU) Convex Optimization Spring 2021 19 / 54



Convergence analysis

Given f convex and differentiable, with dom(f ) = Rn, and 5f is
Lipschitz continuous with constant L > 0,

|| 5 f (x)−5f (y)||2 ≤ L||x − y ||2, for anyx , y

Theorem

Gradient descent with fixed step size t ≤ 1
L satisfies

f (x (k))− f ∗ ≤ ||x
(0) − x∗||22

2tk

and same results holds for backtracking, with t = β
L .

Gradient descent has convergence rate O(1/k), i.e., it takes O(1/ε)
itesration for gradient descent to find a ε-suboptimal point.
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Convergence analysis: Analysis for strong convexity

strong convexity: f (x)− m
2 ||x ||

2
2 is convex for some m > 0

Theorem

Given that f strong convex, Lipschitz continuous, gradient descent with
fixed step size t ≤ 2

m+L or with backtracking line search satisfies

f (x (k))− f ∗ ≤ γk L
2
||x (0) − x∗||22

where 0 < γ < 1

convergence rate is O(γk), exponentially fast! Now, it takes only
O(log(1/ε)) to find a ε-suboptimal point.
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Exact line search v.s. backtracking line search

γ = O(1−m/L), the convergence rate reduces to

O(
L

m
log(1/ε))

higher condition number L/m → slower rate
not only true in theory, but also apparent in practice
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An example of checking the conditions

goal:

f (β) =
1

2
||y − X>β||22

Lipschitz continuity of 5f :

recall this means 52f (x) � LI
52f (β) = X>X −→ L = λmax(X>X )

Strong convexity of f :

52f (x) � mI
52f (β) = X>X → m = λmin(X>X )
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Practicality tricks

stopping rule: stop when || 5 f (x)||2 is small

recall 5f (x∗) = 0 at solution x∗

if f is strongly convex with m, then

|| 5 f (x)||2 ≤
√

2mε⇒ f (x)− f ∗ ≤ ε

Pros and cons
pros:

simple idea, and each iteration is cheap
fast for well-conditioned, strongly convex problems

cons:

can often be slow, because many of none convexity or not
well-conditioned
can’t handle non-differential functions
Non-convex optimization!
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Stochastic gradient descent

consider minimizing an average of functions

min
x

1

m

m∑
i=1

fi (x)

gradient descent:

x (k) = x (k−1) − tk ·
1

m

m∑∑∑
i=1

5fi (x (k−1)), k = 1, 2, 3, · · · ,

stochastic gradient descent (SGD) repeats:

x (k) = x (k−1) − tk ·5fik (x
(k−1)), k = 1, 2, 3, · · · ,

where index ik ∈ {1, · · · ,m} is chosen at iteration k
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How to choose index ik

Randomly or cyclically select sample gradient:
randomized rule: choose ik ∈ {1, · · · ,m} uniformly at random

more common in practice
E(5fik (x)) = 5f (x)
an unbiased estimate of gradient at each step

cyclic rule choose ik = 1, 2, · · · ,m, 1, 2, · · · ,m, · · ·
main appeal of SGD:

The iteration cost is independent of number of functions
SGD will save big a lot in memory usage, compared with batch GD
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An example of SGD: stochastic logistic regression

min
β

1

m

m∑
i=1

(
−yix>i β + log(1 + exp(x>i β))

)
︸ ︷︷ ︸

fi (β)

where (xi , yi ) ∈ Rn × {0, 1}, i = 1, 2, · · · , n

5f (β) = 1
m

∑m
i=1(yi − pi (β))xi

full gradient (i.e. batch) v.s. stochastic gradient:

one batch update costs O(np)
one stochastic update costs O(p)

if large amount of steps are needed, SGD is much more affordable
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How to choose step size?

diminishing step sizes: t + k = 1
k

why not fixed step size?

use cyclic rule
tk = t for m updates in a row, we have

x (k+m) = x (k) − t
m∑
i=1

5fi (x
(k+i−1))

batch gradient with step size mt is:

x (k+m) = x (k) − t
m∑
i=1

5fi (x
(k))

difference:

∆ = t
m∑
i=1

[5fi ∗ x (k+i−1) −5fi (x
(k))]

if t is constant, ∆ won’t go to zero
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Convergence rates for SGD

for convex f , SGD with diminishing step size satifies

E(f (x (k))− f ∗ = O(1/
√
k)

stays the same even if f is Lipschitz gradient

for strongly convex, SGD has

E(f (x (k)))− f ∗ = O(1/k)

so, stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity
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Improve SGD using mini-batches

mini-batch stochastic gradient descent: randomly choose a subset
Ik ⊆ {1, · · · ,m}, with |Ik | << m, do:

x (k) = x (k−1) − tk ·
1

b

∑
i∈Ik

5fi (x
(k−1)), k = 1, 2, 3, · · ·

approximate full gradient by an unbiased estimate:

E

1

b

∑
i∈Ik

5fi (x
(k−1))

 = 5f (x)

reduces variance by a 1
b

b times more expensive in computation

H. Xiao (IFI@GSU) Convex Optimization Spring 2021 30 / 54



An example of SGD: logistic regression

min
β

1

m

m∑
i=1

(
−yix>i β + log(1 + exp(x>i β))

)
+
λ

2
||β||22

where fi (β) = −yix>i β + log(1 + exp(x>i β)) + λ
2 ||β||

2
2

gradient : 5f (β) = 1
n

∑n
i=1(yi − pi (β))xi + λβ

update costs

one batch: O(np)
one mini-batch: O(bp)
one stochastic: O(p)
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An example of SGD: logistic regression

Figure: Example with n = 10, 000,p = 20, all methods use fixed step size
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Early stopping

for the regularized logistic regression:

min
β

1

m

m∑
i=1

(
−yix>i β + log(1 + exp(x>i β))

)
, s.t. ||β||22 ≤ t

we could also use early stopping to run gradient descent on the
unregularized problem:

min
β

1

m

m∑
i=1

(
−yix>i β + log(1 + exp(x>i β))

)
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Early stopping

early stopping:

start with β(0), solution to regularized problem at t = 0
run gradient descent on unregularized criterion:

β(k) = β(k−1) − ε · 1

n

n∑
i=1

(yi − pi (β
(k−1)))xi , k = 1, 2, 3, · · ·

treat β(k) is an spproximate solution to regularized problem with
t = ||β(k)||2
why early stopping?

more convenient
efficient than using explicit regularization
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Concludes of SGD

SGD can be super effective w.r.t. iteration cost, memory

SGD is slow to converge, not for strong convexity

in many ml problems we are not caring about optimizing to high
accuracy

fixed step sizes commonly used

conduct experiments on a small fraction

momentum/acceleration, averaging,adaptive step sizes are all popular
variants in practice

SGD is popular in large-scale, continuous, non-convex optimization
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Lagrangian

What if we have constraints in the optimization problems?

minimize
β

f (β)

subject to gi (β) ≤ 0,∀i = 1, · · · , k
hj(β) = 0,∀j = 1, · · · , l

(1)

variable β, domain D, optimal value p∗

Lagrangian:

L(β, αi , γj) = f (β) +
k∑

i=1

αigi (β) +
l∑

j=1

γjhj(β)

weighted sum of objective and constraint functions
αi is Lagrange multiplier associated with gi (β) ≤ 0
γj is Lagrange multiplier associated with hj(β) = 0
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Langrange dual function

Lagrange dual function g

g(α, γ) = inf
β
L(β, αi , γj)

= inf
β

(
f (β) +

∑k
i=1 αigi (β) +

∑l
j=1 γjhj(β)

)

lower bound property: if α > 0, then g(α, γ) ≤ p∗

weak duality: d∗ ≤ p∗

strong duality: d∗ = p∗ (usually holds for convex problems)

Karush-Kuhn-Tucker (KKT) conditions:
primal constraints: gi (β) ≤ 0, hj(β) = 0
dual constraints: α ≥ 0
complementary slackness αigi (β) = 0
gradient of Lagrangian w.r.t. β vanishes
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Linear Programming

Linear Programming: Optimize a linear function subject to linear
inequalities.

max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj = bi , 1 ≤ i ≤ m

xj ≥ 0, 1 ≤ j ≤ n

max c>x
s.t. Ax = b

x ≥ 0

Generalizes: 2-person zero-sum games, shortest path, max flow,
assignment problem, matching ...
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A Toy Example of Linear Programming

Brewery Problem

Small Brewery produces two products: ale and beer

production is limited by scarce resources: corn, hops, barley malt
recipes for ale and beer require different proportions of resources:

Beverage Corn Hops Malt Profit
(pounds) (ounces) (pounds) (Dollar)

Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 13
Constraints 480 160 1190

How to maximize profits?

34 barrels of ale: 442$?
32 barrels of beer: 736$?
7.5 barrels of ale, 29.5 barrels of beer: 776$?
12 barrels of ale, 28 barrels of beer: 800$?
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A Toy Example of Linear Programming

Brewery Problem

Small Brewery produces two products: ale and beer

production is limited by scarce resources: corn, hops, barley malt
recipes for ale and beer require different proportions of resources:

Beverage Corn Hops Malt Profit
(pounds) (ounces) (pounds) (Dollar)

Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 13
Constraints 480 160 1190

Objective function, constraints and decision variables X ,Y

maximize 13X + 23Y
s.t. 5X + 15Y ≤ 480

4X + 4Y ≤ 160
35X + 20Y ≤ 1190
X ,Y ≥ 0
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Standard form of a linear programming

Let’s check the standard form of an LP problem

input: real numbers aij , cj and bi
output: real numbers xj
n : decision variables; m : constraints number
objective: maximize (or minimize) linear objective function subject to
linear inequalities

that means NO x2, xy , arccos(x), etc

max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj = bi , 1 ≤ i ≤ m

xj ≥ 0, 1 ≤ j ≤ n

max c>x
s.t. Ax = b

x ≥ 0
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Some tricks to equivalent forms transformation of the
functions

by introducing a nonnegative slack variable s, a less inequality
constraint can be reduced to an equality constraint:

x + 2y − 3z ≤ 17⇒ x + 2y − 3z + s = 17, s ≥ 0

similarly, a greater inequality can also be transformed to an equality
constraint:

x + 2y − 3z ≥ 17⇒ x + 2y − 3z − s = 17, s ≥ 0

s is a nonnegative slack variable

the minimize objective function can be changed to a maximize
objective function:

min (x + 2y − 3z) ⇒ max (−x − 2y + 3z)

the unrestricted constraint is equivalent to two nonnegative
conditions:

x unrestricted ⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0
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Converting Brewery problem to a standard form

max 13X + 23Y
s.t. 5X + 15Y ≤ 480

4X + 4Y ≤ 160
35X + 20Y ≤ 1190
X ,Y ≥ 0

max 13X + 23Y
s.t. 5X + 15Y + SA = 480

4X + 4Y + +SB = 160
35X + 20Y + SC = 1190
X ,Y ,SA, SB , SC ≥ 0

Here, we introduce the Non-negative Slack variables: SA, SB ,SC
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Brewery problem: feasible region
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Brewery problem: objective function

H. Xiao (IFI@GSU) Convex Optimization Spring 2021 45 / 54



Brewery problem: geometry

Brewery problem observation.

regardless of objective function coefficients, an optimal solution occurs
at a vertex

convex set: if two points x and y are in the set, then so is
λx + (1− λ)y for any λ ∈ [0, 1]

vertex: a point x in the set that can not be written as a strict convex
combination of two distinct points in the set
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Basis feasible solution: example

Basis feasible solutions
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Linear programming duality

primal problem

(P) max 13X + 23Y
s.t. 5X + 15Y ≤ 480

4X + 4Y ≤ 160
35X + 20Y ≤ 1190
X ,Y ≥ 0

(2)

Goal:

find a lower bound on optimal value
find an upper bound on optimal value
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Linear programming duality

primal problem

(P) max 13X + 23Y
s.t. 5X + 15Y ≤ 480

4X + 4Y ≤ 160
35X + 20Y ≤ 1190
X ,Y ≥ 0

(3)

Idea: add non-negative combination (C ,H,M) of constraints s.t.

13X + 23Y ≤ (5C + 4H + 35M) · X + (15C + 4H + 20M) · Y
≤ 480C + 160H + 1190M

dual problem: find best such upper bound

(D) min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 35M ≤ 23
C ,H,M ≥ 0
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Linear programming duality
economic interpretation

Brewer to find optimal mix of bear and ale to maximize profits

(P) max 13X + 23Y
s.t. 5X + 15Y ≤ 480

4X + 4Y ≤ 160
35X + 20Y ≤ 1190
X ,Y ≥ 0

(4)

Entrepreneur to buy individual resources from brewer at min cost

C ,H,M =unit price for corn, hops malt
Brewer won’t agree to see resources if “5C + 4H + 35M < 13”

(P) min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C ,H,M ≥ 0

(5)
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How to take duals given primals?
LP dual recipe

canonical form

(P) max c>x
s.t. Ax ≤ b

x ≥ 0

(D) min y>b
s.t. A>y ≥ c

y ≥ 0

property: the dual of the dual is the primal

Primal (P) Maximize

constraints
ax = bi
ax ≤ bi
ax ≥ bi

variables
xj ≥ 0
xj ≤ 0

xj unrestricted

Minimize Dual (D)

yi unrestricted
variablesyi ≥ 0

yi ≤ 0

a>y ≥ cj
constraintsa>y ≤ cj

a>y = cj
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Linear programming strong and weak duality

LP strong duality

for A ∈ Rm×n, b ∈ Rm, c ∈ Rn, if (P) and (D) are nonempty, then max =
min

(P) max c>x
s.t. Ax ≤ b

x ≥ 0

(D) min y>b
s.t. A>y ≥ c

y ≥ 0

LP weak duality

for A ∈ Rm×n, b ∈ Rm, c ∈ Rn, if (P) and (D) are nonempty, then max ≤
min

(P) max c>x
s.t. Ax ≤ b

x ≥ 0

(D) min y>b
s.t. A>y ≥ c

y ≥ 0
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Linear programming duality: sensitivity analysis

How much should brewer be willing to pay (marginal price) for
additional supplies of scarce resources?

corn $ 1, hops $ 2, malt $0

Suppose a new product “light beer” is proposed. It requires 2 corn, 5
hops, 24 malt. How much profit must be obtained from light beer to
justify diverting resources from production of beer and ale?

At least 2 ($1) + 5 ($2) + 24 ($0) = $12 / barrel.
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The End
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