IFI 9000 Analytics Methods Convex Optimization

by Houping Xiao

Spring 2021

GeorgaState
University. OF BUSINESS

Introduction

Mathematical Optimization

- (Mathematical) optimization problem

$$
\begin{array}{cl}
\underset{\boldsymbol{\beta}}{\operatorname{minimize}} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq b_{i}, \forall i=1, \cdots, m
\end{array}
$$

- $x=\left(x_{1}, \cdots, x_{n}\right)$: optimization variables
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function
- $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \cdots, m$: constraint functions
- optimal solution x^{*} has smallest value of f among all vectors that satisfy the constraints

Examples

- portfolio optimization
- variables: amounts invested in different assets
- objective: overall risk or return variance
- constraints: budget, max./min. investment per asset, minimum return
- data fitting
- variables: model parameters
- objective: measure of misfit or prediction error
- constraints: prior information, parameter limits

Solving optimization problems

- Usually, it's very difficult to solve the general optimization problem
- The methods involve some compromise, e.g., very long computation time, or not always finding the solution
- There are some exceptions that certain problem classes can be solved efficiently and reliably
- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares problems

- Least-squares problems: Optimize the square loss (distance) without constraints

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2}
$$

- solutions
- The optimal(analytical) solution is that $x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b$
- There are reliable and efficient algorithms and software, such as 1 m in R and scipy.optimize in Python
- The computation time of solving the least-squares problems is proportional to $n^{2} k$ given $A \in \mathbb{R}^{k \times n}$; less if structured (i.e., \boldsymbol{x} is sparse)
- using least-squares
- Least-squares problems are easy to recognize
- There are a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear Programming

- Linear Programming: Optimize a linear function subject to linear inequalities.

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{array}
$$

- solutions:
- no analytical formula, but there are reliable and efficient algorithms and software
- The computation time of solving the linear programs is proportional to $n^{2} m$ if $m>n$; less with structure
- using linear programming
- not as easy to recognize as least-squares problems
- there are a few standard tricks used to convert problems into linear programs. For instance, problems involving l_{1}-norms, piecewise-linear functions

Convex optimization problem

- The formula with a convex optimization is that

$$
\begin{array}{cl}
\underset{\boldsymbol{\beta}}{\operatorname{minimize}} & f(\boldsymbol{x}) \\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq b_{i}, \forall i=1, \cdots, k
\end{array}
$$

where both objective and constraint function are convex functions:

$$
\begin{aligned}
& \qquad g_{i}(\alpha x+\beta y) \leq \alpha g_{i}(x)+\beta g_{i}(y) \\
& \text { if } \alpha+\beta=1, \alpha \geq 0, \beta \geq 0
\end{aligned}
$$

- The convex optimization includes least-square problems and linear programs as special cases

Solving convex optimization problems

- Usually, there is no analytical solution, but with reliable and efficient algorithms
- The computation time proportional to $\max \left\{n^{3}, n^{2} m, F\right\}$ where F is cost of evaluating f and g_{i} and their first and second derivatives

using convex optimization

- Sometimes, it's often difficult to recognize
- There are many tricks for transforming problems into convex form. Surprisingly many problems can be solved via convex optimization

Solving an optimization: a general perspective

- Consider an unconstrained, smooth convex optimization

$$
\min _{x} f(x)
$$

- f is convex and differentiable with $\operatorname{dom}(f)=\mathbb{R}^{n}$
- optimal criterion value $f^{*}=\min _{x} f(x)$
- a optimal solution x^{*}
- A necessary and sufficient condition for a point x^{*} to be optimal is

$$
\nabla f\left(x^{*}\right)=0
$$

- $\nabla f(x)$ is easy to obtain
- But, $\nabla f(x)$ doesn't have a straightforward solution?
- (Batch) Descent Methods: Gradient Descent, Stochastic Gradient Descent, etc

Descent Methods

- Consider an unconstrained, smooth convex optimization

$$
\min _{x} f(x)
$$

- Find a sequence: $x^{(0)}, x^{(1)}, \cdots, \in \operatorname{dom}(f)$, s.t.

$$
\lim _{k \rightarrow \infty} f\left(x^{(k)}\right) \rightarrow f^{*}
$$

- descent methods:

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)}, \quad \text { s.t. } \quad f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- gradient descent: Initialize $x^{(0)}$, repeat:

$$
x^{(k+1)}=x^{(k)}-t_{k} \dot{\nabla} f\left(x^{(k)}\right), \quad k=1,2,3, \cdots
$$

Stop at some point (i.e., x no change!)

Gradient Descent Methods

"Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function."

- for each k, based on the Taylor theorem

$$
f(y) \approx f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x) \nabla^{2} f(x)(y-x)
$$

- quadratic approximation: replace Hessian matrix $\nabla^{2} f$ by $\frac{1}{t} I$

$$
f(y) \approx f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

- linear approximation to f, proximity term to x, with weight $\frac{1}{2 t}$
- choose next point $y=x^{+}$to minimize quadratic approximation:

$$
x^{+}=x-t \nabla f(x)
$$

Gradient Descent Methods

How to choose step size or learning rate t ?

- Fixed step size strategy: at each step, the step size or learning rate t_{k} is fixed, i.e., $t_{k}=t$ for all $k=1,2,3, \cdots$,
- Issues : can diverge if t is too big

Large step size: 10 iterations

How to choose step size or learning rate t ?

- Fixed step size strategy: at each step, the step size or learning rate t_{k} is fixed, i.e., $t_{k}=t$ for all $k=1,2,3, \cdots$,
- Issues : can converge super slow if t is too small

Small step size: 1000 iterations

How to choose step size or learning rate t ?

- Fixed step size strategy: at each step, the step size or learning rate t_{k} is fixed, i.e., $t_{k}=t$ for all $k=1,2,3, \cdots$,
- Issues : can converge fast if t is been carefully chosen

"Just right" step size: 40 iterations

Backtracking line search: Adaptively choose step size

- backtracking line search is one way to adaptively choose the step size
Algorithm 1: Gradient descent with Backtracking line search
$\alpha \in(0,0.5), \beta \in(0,1)$;
given a starting point $x \in \operatorname{dom}(f)$;
initialization, set $t=t^{0}$;

repeat

determine a descent direction $\nabla f(x)$;
while $f(x-t \nabla f(x))>f(x)-\alpha\|\nabla f(x)\|_{2}^{2}$ do

$$
\text { set } t=\beta \cdot t \text {; }
$$

end
update $x=x-t \nabla f(x)$;
until stopping criterion is satisfied;

- simple and tends to work well in practice (further simplification: $\alpha=0.5$)

Backtracking (line search) Interpretation

for us

$\Delta x=-\nabla f(x)$

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line over which we search. The lower dashed line shows the linear extrapolation of f, and the upper dashed line has a slope a factor of α smaller. The backtracking condition is that f lies below the upper dashed line, i.e., $0 \leq$ $t \leq t_{0}$.

Exact line search: select the best step size

- Exact line search is able to choose optimal step size along direction of negative gradient

$$
t=\underset{s \geq 0}{\arg \min } \quad f(x-s \nabla f(x))
$$

- Usually not possible to exactly minimize $f(x-s \nabla f(x))$
- Approximations to Exact line search are typically not as efficient as backtracking (not worth it!)

Convergence analysis

- Given f convex and differentiable, with $\operatorname{dom}(f)=\mathbb{R}^{n}$, and ∇f is Lipschitz continuous with constant $L>0$,

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}, \text { for any } x, y
$$

Theorem

Gradient descent with fixed step size $t \leq \frac{1}{L}$ satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}
$$

and same results holds for backtracking, with $t=\frac{\beta}{L}$.

- Gradient descent has convergence rate $\mathcal{O}(1 / k)$, i.e., it takes $\mathcal{O}(1 / \epsilon)$ itesration for gradient descent to find a ϵ-suboptimal point.

Convergence analysis: Analysis for strong convexity

- strong convexity: $f(x)-\frac{m}{2}\|x\|_{2}^{2}$ is convex for some $m>0$

Theorem

Given that f strong convex, Lipschitz continuous, gradient descent with fixed step size $t \leq \frac{2}{m+L}$ or with backtracking line search satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \gamma^{k} \frac{L}{2}\left\|x^{(0)}-x^{*}\right\|_{2}^{2}
$$

where $0<\gamma<1$

- convergence rate is $\mathcal{O}\left(\gamma^{k}\right)$, exponentially fast! Now, it takes only $\mathcal{O}(\log (1 / \epsilon))$ to find a ϵ-suboptimal point.

Exact line search v.s. backtracking line search

Figure 9.6 Error $f\left(x^{(k)}\right)-p^{\star}$ versus iteration k for the gradient method with backtracking and exact line search, for a problem in \mathbf{R}^{100}.

- $\gamma=\mathcal{O}(1-m / L)$, the convergence rate reduces to

$$
\mathcal{O}\left(\frac{L}{m} \log (1 / \epsilon)\right)
$$

- higher condition number $L / m \rightarrow$ slower rate
- not only true in theory, but also apparent in practice

An example of checking the conditions

- goal:

$$
f(\beta)=\frac{1}{2}\left\|y-X^{\top} \beta\right\|_{2}^{2}
$$

- Lipschitz continuity of ∇f :
- recall this means $\nabla^{2} f(x) \preceq L I$
- $\nabla^{2} f(\beta)=X^{\top} X \rightarrow L=\lambda_{\max }\left(X^{\top} X\right)$
- Strong convexity of f :
- $\nabla^{2} f(x) \succeq m l$
- $\nabla^{2} f(\beta)=X^{\top} X \rightarrow m=\lambda_{\text {min }}\left(X^{\top} X\right)$

Practicality tricks

- stopping rule: stop when $\|\nabla f(x)\|_{2}$ is small
- recall $\nabla f\left(x^{*}\right)=0$ at solution x^{*}
- if f is strongly convex with m, then

$$
\|\nabla f(x)\|_{2} \leq \sqrt{2 m \epsilon} \Rightarrow f(x)-f^{*} \leq \epsilon
$$

- Pros and cons
- pros:
- simple idea, and each iteration is cheap
- fast for well-conditioned, strongly convex problems
- cons:
- can often be slow, because many of none convexity or not well-conditioned
- can't handle non-differential functions
- Non-convex optimization!

Stochastic gradient descent

- consider minimizing an average of functions

$$
\min _{x} \frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

- gradient descent:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \frac{1}{\boldsymbol{m}} \sum_{\boldsymbol{i}=1}^{\boldsymbol{m}} \nabla \boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{x}^{(\boldsymbol{k}-1)}\right), k=1,2,3, \cdots,
$$

- stochastic gradient descent (SGD) repeats:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \nabla \boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{x}^{(\boldsymbol{k}-1)}\right), k=1,2,3, \cdots
$$

where index $i_{k} \in\{1, \cdots, m\}$ is chosen at iteration k

How to choose index i_{k}

- Randomly or cyclically select sample gradient:
- randomized rule: choose $i_{k} \in\{1, \cdots, m\}$ uniformly at random
- more common in practice
- $\mathbb{E}\left(\nabla f_{i_{k}}(x)\right)=\nabla f(x)$
- an unbiased estimate of gradient at each step
- cyclic rule choose $i_{k}=1,2, \cdots, m, 1,2, \cdots, m, \cdots$
- main appeal of SGD:
- The iteration cost is independent of number of functions
- SGD will save big a lot in memory usage, compared with batch GD

An example of SGD: stochastic logistic regression

$$
\min _{\beta} \frac{1}{m} \sum_{i=1}^{m} \underbrace{\left(-y_{i} x_{i}^{\top} \beta+\log \left(1+\exp \left(x_{i}^{\top} \beta\right)\right)\right)}_{f_{i}(\beta)}
$$

where $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{n} \times\{0,1\}, i=1,2, \cdots, n$

- $\nabla f(\beta)=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-p_{i}(\beta)\right) x_{i}$
- full gradient (i.e. batch) v.s. stochastic gradient:
- one batch update costs $\mathcal{O}(n p)$
- one stochastic update costs $\mathcal{O}(p)$
- if large amount of steps are needed, SGD is much more affordable

How to choose step size?

- diminishing step sizes: $t+k=\frac{1}{k}$
- why not fixed step size?
- use cyclic rule
- $t_{k}=t$ for m updates in a row, we have

$$
x^{(k+m)}=x^{(k)}-t \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k+i-1)}\right)
$$

- batch gradient with step size $m t$ is:

$$
x^{(k+m)}=x^{(k)}-t \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k)}\right)
$$

- difference:

$$
\Delta=t \sum_{i=1}^{m}\left[\nabla f_{i} * x^{(k+i-1)}-\nabla f_{i}\left(x^{(k)}\right)\right]
$$

if t is constant, Δ won't go to zero

Convergence rates for SGD

- for convex f, SGD with diminishing step size satifies

$$
\mathbb{E}\left(f\left(x^{(k)}\right)-f^{*}=\mathcal{O}(1 / \sqrt{k})\right.
$$

- stays the same even if f is Lipschitz gradient
- for strongly convex, SGD has

$$
\mathbb{E}\left(f\left(x^{(k)}\right)\right)-f^{*}=\mathcal{O}(1 / k)
$$

so, stochastic methods do not enjoy the linear convergence rate of gradient descent under strong convexity

Improve SGD using mini-batches

- mini-batch stochastic gradient descent: randomly choose a subset $I_{k} \subseteq\{1, \cdots, m\}$, with $\left|I_{k}\right| \ll m$, do:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \frac{1}{b} \sum_{i \in I_{k}} \nabla f_{i}\left(x^{(k-1)}\right), k=1,2,3, \cdots
$$

- approximate full gradient by an unbiased estimate:

$$
\mathbb{E}\left(\frac{1}{b} \sum_{i \in I_{k}} \nabla f_{i}\left(x^{(k-1)}\right)\right)=\nabla f(x)
$$

- reduces variance by a $\frac{1}{b}$
- b times more expensive in computation

An example of SGD: logistic regression

$$
\min _{\beta} \frac{1}{m} \sum_{i=1}^{m}\left(-y_{i} x_{i}^{\top} \beta+\log \left(1+\exp \left(x_{i}^{\top} \beta\right)\right)\right)+\frac{\lambda}{2}\|\beta\|_{2}^{2}
$$

where $f_{i}(\beta)=-y_{i} x_{i}^{\top} \beta+\log \left(1+\exp \left(x_{i}^{\top} \beta\right)\right)+\frac{\lambda}{2}\|\beta\|_{2}^{2}$

- gradient: $\nabla f(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-p_{i}(\beta)\right) x_{i}+\lambda \beta$
- update costs
- one batch: $\mathcal{O}(n p)$
- one mini-batch: $\mathcal{O}(b p)$
- one stochastic: $\mathcal{O}(p)$

An example of SGD: logistic regression

Figure: Example with $n=10,000, p=20$, all methods use fixed step size

Early stopping

- for the regularized logistic regression:

$$
\min _{\beta} \frac{1}{m} \sum_{i=1}^{m}\left(-y_{i} x_{i}^{\top} \beta+\log \left(1+\exp \left(x_{i}^{\top} \beta\right)\right)\right), \quad \text { s.t. } \quad\|\beta\|_{2}^{2} \leq t
$$

- we could also use early stopping to run gradient descent on the unregularized problem:

$$
\min _{\beta} \frac{1}{m} \sum_{i=1}^{m}\left(-y_{i} x_{i}^{\top} \beta+\log \left(1+\exp \left(x_{i}^{\top} \beta\right)\right)\right)
$$

Early stopping

- early stopping:
- start with $\beta^{(0)}$, solution to regularized problem at $t=0$
- run gradient descent on unregularized criterion:

$$
\beta^{(k)}=\beta^{(k-1)}-\epsilon \cdot \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-p_{i}\left(\beta^{(k-1)}\right)\right) x_{i}, k=1,2,3, \cdots
$$

- treat $\beta^{(k)}$ is an spproximate solution to regularized problem with $t=\left\|\beta^{(k)}\right\|_{2}$
- why early stopping?
- more convenient
- efficient than using explicit regularization

Concludes of SGD

- SGD can be super effective w.r.t. iteration cost, memory
- SGD is slow to converge, not for strong convexity
- in many ml problems we are not caring about optimizing to high accuracy
- fixed step sizes commonly used
- conduct experiments on a small fraction
- momentum/acceleration, averaging,adaptive step sizes are all popular variants in practice
- SGD is popular in large-scale, continuous, non-convex optimization

Lagrangian

- What if we have constraints in the optimization problems?

$$
\begin{array}{cc}
\underset{\boldsymbol{\beta}}{\operatorname{minimize}} & f(\boldsymbol{\beta}) \\
\text { subject to } & g_{i}(\boldsymbol{\beta}) \leq 0, \forall i=1, \cdots, k \tag{1}\\
& h_{j}(\boldsymbol{\beta})=0, \forall j=1, \cdots, l
\end{array}
$$

variable $\boldsymbol{\beta}$, domain \mathcal{D}, optimal value p^{*}

- Lagrangian:

$$
\mathcal{L}\left(\boldsymbol{\beta}, \alpha_{i}, \gamma_{j}\right)=f(\boldsymbol{\beta})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\boldsymbol{\beta})+\sum_{j=1}^{l} \gamma_{j} h_{j}(\boldsymbol{\beta})
$$

- weighted sum of objective and constraint functions
- α_{i} is Lagrange multiplier associated with $g_{i}(\boldsymbol{\beta}) \leq 0$
- γ_{j} is Lagrange multiplier associated with $h_{j}(\boldsymbol{\beta})=0$

Langrange dual function

- Lagrange dual function g

$$
\begin{aligned}
g(\alpha, \gamma) & =\inf _{\boldsymbol{\beta}} \mathcal{L}\left(\boldsymbol{\beta}, \alpha_{i}, \gamma_{j}\right) \\
& =\inf _{\boldsymbol{\beta}}\left(f(\boldsymbol{\beta})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\boldsymbol{\beta})+\sum_{j=1}^{l} \gamma_{j} h_{j}(\boldsymbol{\beta})\right)
\end{aligned}
$$

- lower bound property: if $\alpha>0$, then $g(\alpha, \gamma) \leq p^{*}$
- weak duality: $d^{*} \leq p^{*}$
- strong duality: $d^{*}=p^{*}$ (usually holds for convex problems)
- Karush-Kuhn-Tucker (KKT) conditions:
- primal constraints: $g_{i}(\beta) \leq 0, h_{j}(\beta)=0$
- dual constraints: $\alpha \geq 0$
- complementary slackness $\alpha_{i} g_{i}(\beta)=0$
- gradient of Lagrangian w.r.t. β vanishes

Linear Programming

- Linear Programming: Optimize a linear function subject to linear inequalities.

$$
\begin{array}{clll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \max & c^{\top} x \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, & 1 \leq i \leq m & \text { s.t. } \\
& x_{j} \geq 0, & 1 \leq=b \\
& 1 \leq j \leq n & & x \geq 0
\end{array}
$$

- Generalizes: 2-person zero-sum games, shortest path, max flow, assignment problem, matching ...

A Toy Example of Linear Programming

Brewery Problem

- Small Brewery produces two products: ale and beer
- production is limited by scarce resources: corn, hops, barley malt
- recipes for ale and beer require different proportions of resources:

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (Dollar)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	13
Constraints	480	160	1190	

- How to maximize profits?
- 34 barrels of ale: $442 \$$?
- 32 barrels of beer: $736 \$$?
- 7.5 barrels of ale, 29.5 barrels of beer: $776 \$$?
- 12 barrels of ale, 28 barrels of beer: $800 \$$?

A Toy Example of Linear Programming

Brewery Problem

- Small Brewery produces two products: ale and beer
- production is limited by scarce resources: corn, hops, barley malt
- recipes for ale and beer require different proportions of resources:

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (Dollar)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	13
Constraints	480	160	1190	

- Objective function, constraints and decision variables X, Y

$$
\begin{array}{cl}
\operatorname{maximize} & 13 X+23 Y \\
\text { s.t. } & 5 X+15 Y \leq 480 \\
& 4 X+4 Y \leq 160 \\
& 35 X+20 Y \leq 1190 \\
& X, Y \geq 0
\end{array}
$$

Standard form of a linear programming

- Let's check the standard form of an LP problem
- input: real numbers $a_{i j}, c_{j}$ and b_{i}
- output: real numbers x_{j}
- n : decision variables; m : constraints number
- objective: maximize (or minimize) linear objective function subject to linear inequalities
- that means NO $x^{2}, x y, \arccos (x)$, etc

\max	$\sum_{j=1}^{n} c_{j} x_{j}$		\max	$c^{\top} x$
s.t.	$\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$,	$1 \leq i \leq m$	s.t.	$A x=b$
	$x_{j} \geq 0$,	$1 \leq j \leq n$		$x \geq 0$

Some tricks to equivalent forms transformation of the functions

- by introducing a nonnegative slack variable s, a less inequality constraint can be reduced to an equality constraint:

$$
x+2 y-3 z \leq 17 \Rightarrow x+2 y-3 z+s=17, s \geq 0
$$

- similarly, a greater inequality can also be transformed to an equality constraint:

$$
x+2 y-3 z \geq 17 \Rightarrow x+2 y-3 z-s=17, s \geq 0
$$

s is a nonnegative slack variable

- the minimize objective function can be changed to a maximize objective function:

$$
\min (x+2 y-3 z) \Rightarrow \max (-x-2 y+3 z)
$$

- the unrestricted constraint is equivalent to two nonnegative conditions:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Converting Brewery problem to a standard form

$$
\begin{array}{cl}
\max & 13 X+23 Y \\
\text { s.t. } & 5 X+15 Y \leq 480 \\
& 4 X+4 Y \leq 160 \\
& 35 X+20 Y \leq 1190 \\
& X, Y \geq 0
\end{array}
$$

$$
\begin{array}{cl}
\max & 13 X+23 Y \\
\text { s.t. } & 5 X+15 Y+S_{A}=480 \\
& 4 X+4 Y++S_{B}=160 \\
& 35 X+20 Y+S_{C}=1190 \\
& X, Y, S_{A}, S_{B}, S_{C} \geq 0
\end{array}
$$

- Here, we introduce the Non-negative Slack variables: S_{A}, S_{B}, S_{C}

Brewery problem: feasible region

Brewery problem: objective function

Brewery problem: geometry

- Brewery problem observation.
- regardless of objective function coefficients, an optimal solution occurs at a vertex

- convex set: if two points x and y are in the set, then so is $\lambda x+(1-\lambda) y$ for any $\lambda \in[0,1]$
- vertex: a point x in the set that can not be written as a strict convex combination of two distinct points in the set

Basis feasible solution: example

- Basis feasible solutions

Linear programming duality

- primal problem

$$
\begin{array}{cl}
(P) \quad \max & 13 X+23 Y \\
\text { s.t. } & 5 X+15 Y \leq 480 \\
& 4 X+4 Y \leq 160 \tag{2}\\
& 35 X+20 Y \leq 1190 \\
& X, Y \geq 0
\end{array}
$$

- Goal:
- find a lower bound on optimal value
- find an upper bound on optimal value

Linear programming duality

- primal problem

$$
\begin{array}{cl}
\text { (P) } \max & 13 X+23 Y \\
\text { s.t. } & 5 X+15 Y \leq 480 \\
& 4 X+4 Y \leq 160 \\
& 35 X+20 Y \leq 1190 \\
& X, Y \geq 0
\end{array}
$$

- Idea: add non-negative combination (C, H, M) of constraints s.t.

$$
\begin{aligned}
13 X+23 Y & \leq(5 C+4 H+35 M) \cdot X+(15 C+4 H+20 M) \cdot Y \\
& \leq 480 C+160 H+1190 M
\end{aligned}
$$

- dual problem: find best such upper bound
(D) $\min 480 C+160 H+1190 M$

$$
\begin{array}{ll}
\text { s.t. } & 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+35 M \leq 23 \\
& C, H, M \geq 0
\end{array}
$$

Linear programming duality

economic interpretation

- Brewer to find optimal mix of bear and ale to maximize profits

$$
\begin{array}{cl}
\text { (P) } \max & 13 X+23 Y \\
\text { s.t. } & 5 X+15 Y \leq 480 \\
& 4 X+4 Y \leq 160 \tag{4}\\
& 35 X+20 Y \leq 1190 \\
& X, Y \geq 0
\end{array}
$$

- Entrepreneur to buy individual resources from brewer at min cost
- $C, H, M=$ unit price for corn, hops malt
- Brewer won't agree to see resources if " $5 C+4 H+35 M<13$ "

$$
\begin{align*}
& (P) \min 480 C+160 H+1190 M \\
& \text { s.t. } \quad 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \tag{5}\\
& C, H, M \geq 0
\end{align*}
$$

How to take duals given primals?

- canonical form

$$
\begin{array}{rlrl}
\text { (P) } \max & c^{\top} x & \text { (D) } & \min \\
\text { s.t. } & A x \leq b & y^{\top} b \\
& x \geq 0 & \text { s.t. } & A^{\top} y \geq c \\
& & y \geq 0
\end{array}
$$

- property: the dual of the dual is the primal

Primal (P)	Maximize
constraints	$a x=b_{i}$
	$a x \leq b_{i}$
	$a x \geq b_{i}$
variables	$x_{j} \geq 0$
	$x_{j} \leq 0$
	x_{j} unrestricted

Minimize	Dual (D)
y_{i} unrestricted	
$y_{i} \geq 0$	variables
$y_{i} \leq 0$	
$a^{\top} y \geq c_{j}$	
$a^{\top} y \leq c_{j}$	constraints
$a^{\top} y=c_{j}$	

Linear programming strong and weak duality

LP strong duality

for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, if (P) and (D) are nonempty, then $\max =$ min

$$
\begin{array}{rlrl}
\text { (P) } \max & c^{\top} x & \text { (D) } & \min \\
\text { s.t. } & A x \leq b & y^{\top} b \\
& x \geq 0 & \text { s.t. } & A^{\top} y \geq c \\
& & y \geq 0
\end{array}
$$

weak duality

for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, if (P) and (D) are nonempty, then max \leq min

$$
\begin{array}{cl}
(P) \quad \max & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{array}
$$

(D) $\min y^{\top} b$
s.t. $A^{\top} y \geq c$ $y \geq 0$

Linear programming duality: sensitivity analysis

- How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
- corn \$ 1, hops \$ 2, malt \$0
- Suppose a new product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?
- At least $2(\$ 1)+5(\$ 2)+24(\$ 0)=\$ 12 /$ barrel.

The End

