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Introduction

Recall that we fitted out models using training data and were
interested in evaluating the performance w.r.t. independent test data

To produce justifiable model reliability arguments, the test data
should not be used in the training

If the model is evaluated against the training data the results can be
very distracting

The training error rate is often quite different from the test
error rate, and in particular the former can dramatically
underestimate the latter (recall the accuracy vs complexity chart)
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Training vs Test Model Evaluation

Recall this plot from the first session

F
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Real-World Data Issues and Test Performance

A good evaluation is possible when a large test data set is available

Often such set is not available

We are interested in a class of methods that estimate the test error
by holding out a subset of the training observations from the fitting
process, and then applying the statistical learning method to those
(held out) observations
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Validation Set Approach

A standard approach used so far

Randomly divide the available set of samples into two parts: a
training set and a validation/hold-out set (i.e., 80%-20%
splitting)

The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set

The error with reference to the hold-out set is an approximation of
the test error
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An Example

Recall the automobile data: Regressing Mile per Gallon in terms of
the Horse Power

mpg = β0 +

p∑
i=1

βi · (hoursepower)i

We randomly split the 392 observations into two sets, a training set
containing 196 of the data points and a validation set containing the
remaining 196 observations
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Validation Set Cons & Pros

The procedure is simple (e.g., previous example) and only a subset
of the observations those that are included in the training set rather
than in the validation set are used to fit the model

The validation estimate of the test error can be highly variable,
depending on precisely which observations are included in the training
set and which observations are included in the validation set

While the estimated test error vary a lot, finding information
such as model selection is still possible

Since a large portion of the data need to be held aside, the model fits
are not accurate enough
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Leave-One Out Cross-Validation (LOOCV)

We have n data points (x1, y1), · · · , (xn, yn), we use n − 1 for the
training and one instance for the test
Of course a single test point is no where close to the true test error,
but this process is repeated n times, every time n − 1 points used for
training and one point left out for the test
Considering MSE1 = (y1 − ŷ1)2, · · · ,MSEn = (yn − ŷn)2, an
approximation of the test error is

CVn =
1

n

n∑
i=1

MSEi
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LOOCV Cons & Pros

It has very small bias compared to the validation set approach (why?)

The test error overestimation is less than the validation set approach
(why?)

Its results are reproducible unlike the validation set approach which
uses a random subset of the data for test evaluation

It can be computationally very expensive (why?)

For linear models there is shortcut to calculate CVn that only requires
fitting the model once with the entire data (but this shortcut only
applies to linear models)

CVn =
1

n

n∑
i=1

(
yi − ŷi
1− hi

)2

where ŷi are the fitted values of the original least squares problem
and hi are only data dependent

H. Xiao (IFI@GSU) Linear Model Selection and Regularization Spring 2021 10 / 46



K-Fold Cross Validation

Widely used approach for estimating test error

This approach involves randomly dividing the set of observations
into K groups, or folds, of approximately equal size. The first fold is
treated as a validation set, and the method is fit on the remaining
K − 1 folds

This is done in turn for each part k = 1, 2, · · · ,K , and then the
results are combined

Estimates can be used to select best model, and to give an idea of
the test error of the final chosen model

CVK =
1

K

K∑
k=1

MSEk

Often K = 5 or 10 is considered in applications
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K-Fold Cross Validation
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K-Fold CV vs LOOCV

LOOCV is a special case of K -fold CV for K = n

In general K -fold CV is much cheaper than LOOCV because it only
requires K model fits vs n model fits

For model selection, K -fold CV often gives us similar outcomes at a
much lower computational cost
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K-Fold CV vs LOOCV

Aside from the computational issues, even surprisingly K -fold CV
produces better test estimates than the LOOCV

LOOCV has a lower bias compared to the K -fold CV, since it uses
more data to fit the model

But K -fold CV has a lower variance compared to the LOOCV, since
LOOCV is the sum of n highly correlated random variables while the
correlation between the MSE s in K -fold is lower, recall

var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y )
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Cross Validation in Classification

We divide the data into K roughly equal-sized index sets C1, · · · ,CK

Compute

CVk =
1

K

K∑
k=1

Errk

where

Errk =
1

|Ck |
∑
i∈Ck

1(y1 6= ŷi )
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Review of Cross Validation

As mentioned earlier, model selection based on the RSS or R2

statistics can be misleading, since the training error is not a good
representative of the actual test error

Instead through a process of splitting the data into training and
validation sets, we were able to use LOOCV or K -fold CV as
estimates of the test error

We discussed why K -fold cv is more desirable estimate,
computationally and statistically
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Adjusting the Training Statistics for Test Error Approximation
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Adjusting Techniques

We introduce few other ways of adjusting the training error to make
it a better representative of the test error

These adjustments are not as reliable as cross validation, but they
are easier to calculate

These quantities were more widely used before the widespread use
of computers for regression and machine leanring

Now that computers can help performing multiple fits
computationally fast enough, often K -fold CV is considered as the
desirable test error approximation
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List of Other Techniques

Methods to adjust the training error for the number of variables to esti-
mate the test MSE

Cp statistic

AIC: Akaike information criterion

BIC: Bayesian information criterion

Adjusted R2
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Cp Statistic

For a fitted least squares model with d predictors

Cp =
1

n
(RSS + 2d σ̂2)

σ̂2 is an estimate of the noise variance

σ̂2 is normally estimated using all the predictors (full model)

It is an unbiased estimate of the test MSE

The smaller Cp, the better the model (we can pick models with the
smallest Cp statistic)

Becomes a better estimate of the test errors as the sample size, n,
increases
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AIC: Akaike Information Criterion

Defined for a large class of models based on the maximum likelihood
criterion

When we consider the noise ε be of i.i.d. Gaussian, the MLE and
MSE return identical results and in this case we have

AIC =
1

nσ̂2
(RSS + 2d σ̂2)

which is a multiple of Cp (no preference over using one vs the other)

σ̂2 is an estimate of the noise variance

σ̂2 is normally estimated using all the predictors (full model)

The smaller AIC , the better the model (we can pick models with the
smallest AIC statistic)
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BIC: Bayesian Information Criterion

Takes a Bayesian approach to estimate the test error

Asymptotically (n→∞) choosing the model with the highest
posterior probability of being the best model

In the case of least squares the formulation is

BIC =
1

nσ̂2
(RSS + log(n)d σ̂2)

which takes an almost similar form as the previous two statistics

σ̂2 is an estimate of the noise variance

σ̂2 is normally estimated using all the predictors (full model)

The smaller BIC , the better the model (we can pick models with the
smallest BIC statistic)

When n < 7, BIC imposes a smaller penalty on the number of
variables, but for n > 7 that log n > 2 the penalty is larger

In other words in standard observation regimes when n is sufficiently
large, BIC tends to pick smaller models than AIC or Cp
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Adjusted R2

Presents a way of making the R2 statistic dependent on the number
of predictors

Recall the R2 statistic:

R2 = 1− RSS

TSS
, where TSS =

n∑
i=1

(yi − ȳ)2

The formulation for adjusted R2 is

R2
adj = 1− RSS/(n − d − 1)

TSS/(n − 1)

Unlike the other three statistics that being small indicating a better
model, for adjusted R2 were are interested in mdoels that tend to
generate values closer to 1

The use of Cp, AIC, and BIC is more motivated in statistical learning
theory than the adjusted R2
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Comparing the Performances: An Example

Cp, BIC, and adjusted R2 for the best models of each size for the Credit
data set
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Comparison Against CV Techniques

The results are not much different

Note that nowadays CV methods are computationally fast to
implement and regradless of the model can always be used as a
reliable selection tool
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Model Selection
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How to Use These Statistics in Model Selection

Best subset selection formal procedure (NP-hard and
computationally not possible for large p)

H. Xiao (IFI@GSU) Linear Model Selection and Regularization Spring 2021 27 / 46



How to Use These Statistics in Model Selection

Forward stepwise selection (computationally tractable)

At each step the variable that gives the greatest additional
imporvement to the fit is added to the model

Forward selection can even be used when n < p
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How to Use These Statistics in Model Selection

Backward stepwise selection (computationally tractable)

Begins with the full least squares model containing all p predictors,
and then iteratively removes the least useful predictor, one-at-a-tiem

Backward selection requires p < n (to allow the full model to be fit)
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What are Shrinkage Methods and Why Useful?

You would probably hear Ridge Regression and LASSO quite often

The subset selection methods use least squares to fit a linear model
that contains a subset of the predictors

As an alternative, we can fit a model containing all p predictors using
a technique that constrains or regularizes the coefficients estimates,
or equivalently, that shrinks the coefficient estimates towards zero

It may not be immediately obvious why such a constraint should
improve the fit, but it turns out that shrinking the coefficient
estimates can significantly reduce the model variance
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Redige Regression

Recall that the least squares fitting procedure estiamtes
β0, β1, · · · , βp using the values that minimize

RSS =
n∑

i=1

yi − β0 −
p∑

j=1

βj · xij


In contrast, the ridge regression coefficient estimates β̂ridge are the
values that minimize

RSS ridge =
n∑

i=1

yi − β0 −
p∑

j=1

βj · xij

+ λ

p∑
j=1

β2j = RSS + λ

p∑
j=1

β2j

where λ is a hyper/tuning parameter
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Ridge Regression

As with least squares, ridge regression seeks coefficient estimates that
fit the data well, by making the RSS small

However, the second term, λ
∑p

j=1 β
2
j , called a shrinkage penalty,

encourages solutions that are close to zero, and so it has the effect of
shrinking the estimates of βj towards zero

The tunning parameter λ serves to control the relative impact of
these two terms on the regression coefficient estimates (trade off
between bias and variance)

Selecting a good value for λ is critical; often cross-validation is used
for this
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Effect of Increasing λ on the β

The figure below shows how increasing the Ridge penalty pushes the
minimizers of the mixed RSS objective to zero
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Shrinkage Example

Recall that the least squares solution to fit data point
(x1, y1), · · · , (xn, yn) was obtained via the minimization

min
β

n∑
i=1

(yi − β · xi )2; β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

We can show that if we run the ridge regression

min
β

n∑
i=1

(yi − β · xi )2 + λβ2

the new estimaate becomes

β̂ridge =

∑n
i=1 xiyi

λ+
∑

i=1 x
2
i

Note how increasing λ pushes β̂ridge towards zero
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In Class Exercise

For the simple regression problem of fitting (x1, y1), · · · , (xn, yn) to
the model y = β0 + β1x show that the least squares estimates for the
ridge regularized objective

n∑
i=1

(yi − β0 − β1xi )2 + λ(β20 + β21)

are

β̂ridge1 =

∑n
i=1 xiyi −

n2

n+λ x̄ ȳ

λ+
∑n

i=1 x
2
i + n2

n+λ x̄
2
,

β̂ridge0 =
1

n + λ

(
n∑

i=1

yi − β̂ridge1

n∑
i=1

xi

)
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What Happens in Multiple Regression?

In this case we previously had

RSS = (y − Xβ)>(y − Xβ)

which led to
β̂ = (X>X )−1X>y

In the case of regularized problem

(y − Xβ)>(y − Xβ) + λ||β||2

we will have
β̂ridge = (X>X + λI )−1X>y

where || · ||2 is L2 norm and I is the identity matrix
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Credit Data Example

Left: Each curve corresponds to the ridge regression coefficient
estimate for one of the ten variables, plotted as a function of λ

The right-hand panel displays the same ridge coefficient estimates as
the left-hand panel, but instead of displaying λ on the x-axis, we
display ||β̂ridge ||/||β̂||

How much shrinkage happens by increasing λ
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Scaling of the Predictors

In the standard least-squares if we scale a feature value by c , the
corresponding coefficient scales by c−1

However when we have the ridge regularized objective, this is no
more the case

To see a consistent behavior, for the ridge regularized problem we
often work with standardized features:

x̃ij =
xij√

1
n

∑n
i=1(xij − x̄j)2
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Bias-Variance Trade-Off

squared bias (black), variance (green), and test mean square error
(purple) for the ridge regression predictions on a simulated data set,
as a function of λ and ||β̂ridge ||/||β̂||. The horizontal dashed lines
indicate the minimum possible MSE (the standard least squares,
λ = 0 in nowhere close). The purple crosses indicate smallest ridge
regression model MSE values

Recall that test error = bias + variance + noise variance
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Disadvantage of Ridge Regression

Ridge regression will include all p predictors in the final model. The
penalty λ

∑p
j=1 β

2
j will shrink all of the coefficients towards zero, but

it will not set any of them exactly to zero (unless λ =∞)

This may not be a problem for prediction accuracy, but it can create
a challenge in model interpretation in settings in which the number
of variables p is very large

The lasso is an alternative to ridge regression that overcomes this
disadvantage
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LASSO

the lasso coefficient estimates β̂lasso
λ are the values that minimize

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |

where λ ≥ 0 is a tuning parameter

Like best subset selection, the lasso also performs variable selection
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Credit Data Example

Left: Each curve corresponds to the lasso coefficient estimate for one
of the ten variables, plotted as a function of λ

The right-hand panel displays the same ridge coefficient estimates as
the left-hand panel, but instead of displaying λ on the x-axis, we
display ||β̂lasso ||/||β̂||

How much shrinkage happens by increasing λ
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Bias-Variance Trade-Off

Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set

Right: Comparison of squared bias, variance and test MSE between
lasso (solid) and ridge (dashed)
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Take Away Message for LASSO vs Ridge

Neither ridge regression nor the lasso will universally dominate the
other

In general, one might expect the lasso to perform better in a setting
where a relative small number of predictors have substantial
coefficients, and the remaining predictors have coefficients that are
very small or that equal zero

Ridge regression will performance better when the response is a
function of many predictors, all with coefficients of roughly equal
size

However, the number of predictors that is related to the response is
never known a priori for real data sets

H. Xiao (IFI@GSU) Linear Model Selection and Regularization Spring 2021 44 / 46



Take Away Message for LASSO vs Ridge

A technique such as cross validation can be used in order to
determine which approach is better on a particular data set

As with ridge regression, when the least squares estimates have
excessively high variance, the lasso solution can yield a reduction in
variance at the expense of a small increase in bias, and consequently
can generate more accurate predictions

Unlike ridge regression, the lasso performs variable selection, and
hence results in models that are easier to interpret

There are very efficient algorithms for fitting both ridge and lasso
models
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The End
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