IFI 9000 Analytics Methods Linear and Logistic Regression

by Houping Xiao

January  $12^{\mathrm{th}}$ , 2021



H. Xiao (IFI@GSU)

## Introduction

イロト イヨト イヨト

#### Brief Overview of Maximum Likelihood

- Maximum likelihood is a statistical estimation technique
- The main goal is to estimate the parameters of a statistical model given some sample observations
- Let  $x_1, \dots, x_n$  be samples from a distribution with some unknown parameter  $\theta$  and joint distribution

$$f(x_1,\cdots,x_n|\theta)$$

• the maximum likelihood estimate of  $\theta$  based on the observations

$$\hat{\theta} = \arg \max_{\theta} f(x_1, \cdots, x_n | \theta)$$

• When  $x_1, \dots, x_n$  are i.i.d samples from a distribution  $f(\cdot)$ , then

$$f(x_1,\cdots,x_n|\theta)=f(x_1|\theta)\cdots f(x_n|\theta)$$

#### Brief Overview of Maximum Likelihood

• **Example**: There is a normal distribution  $\mathcal{N}(\mu, 1)$  with unknown  $\mu$ . Given five samples from this distribution

$$x_1 = 2.5377, x_2 = 3.8339, x_3 = -0.2588, x_4 = 2.8622, x_5 = 2.3188;$$

what is the maximum likelihood estimate of  $\mu$ ?

• Solution: If we take 5 independent samples  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ , and  $x_5$  from a normal distribution  $\mathcal{N}(\mu, 1)$ , their joint distribution is

$$f(x_1, x_2, x_3, x_4, x_5 | \mu) = \prod_{i=1}^5 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu)^2}{2}\right),$$

some basic calculus yields  $\hat{\mu} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = 2.2587$  (why?)

H. Xiao (IFI@GSU)

Spring 2021 4 / 18

#### Classification

- In many applications, the response is not a quantitative value and instead represents a class, e.g., y ∈ {spam, email}, y ∈ {0, 1, · · · , 9}
- Yet based on the observation of some features, we would like to predict the class, i.e., what we refer to as the classification
- Regression vs classification





• **Example**: Predicting default cases on the credit card (unable to pay the credit card), based on the income and current balance



Balance is more useful than the income. (why?)

#### **Binary Classification**

- In simple regression for a single feature x we fitted a line  $y=\beta_0+\beta_1 x$  to the data
- In a binary classification with only one feature, and the corresponding two classes: class 0 and class 1
- **Question**: Can we do the fit in a way that the sign of  $\beta_0 + \beta_1 x$  becomes an indicator of the class for us?
- Mathematically, for a given feature  $x_i$ , making a decision as follows:

$$y_i = \begin{cases} 1, & \text{if } \beta_0 + \beta_1 x_i \ge 0; \\ 0, & \text{if } \beta_0 + \beta_1 x_i < 0. \end{cases}$$

• A smooth function (i.e., Sigmoid or inverse Logit) that takes almost binary values 0 and 1 based on the sign of the input z

$$\frac{e^{z}}{1+e^{z}} = \begin{cases} 1, & z >> 0; \\ 0, & z << 0. \end{cases}$$

• When we have a smooth approximation of the sign function, learning the parameters  $\beta_0$  and  $\beta_1$  is numerically easier



### **Binary Classification**



- Trying to treat the classification problem as a regression problem does not produce reasonable results!
- Some probability even becomes negative!

H. Xiao (IFI@GSU)

#### How Does Binary Classification Work?

- Learn  $\beta_0$  and  $\beta_1$  from the training data
- Given a test point  $x_i$ , evaluate  $\beta_0 + \beta_1 x_i$
- Pass this quantity to the smooth sign approximation

$$p(x_i) = rac{e^{eta_0+eta_1x_i}}{1+e^{eta_0+eta_1x_i}}$$

- If  $p(x_i)$  was closer to 1 our prediction of the class for  $x_i$  is class one (e.g.,  $p(x_i) = 0.9$ ) and if  $p(x_i)$  was closer to 0 our prediction of the class for  $x_i$  is class zero (e.g.,  $p(x_i) = 0.1$ )
- Now that  $p(\cdot)$  generates some value between 0 and 1; one immediate interpretation for it is being the probability of label 1

$$p(x_i) = \mathbb{P}(y_i = 1 | x_i) = 1 - \mathbb{P}(y_i = 0 | x_i)$$

• If  $p(x_i) = 0.9$ , then the test label is 1 with probability 0.9 and 0 with 0.1

# How to Do the Training for the Simple Logistic Regression?

- Sample observations  $(x_1, y_1), \cdots, (x_n, y_n)$  where  $y_i \in \{0, 1\}$
- The goal is to determine  $\beta_0$  and  $\beta_1$  such that the probability of assigning the right labels is maximized

$$\arg\max_{\beta_0,\beta_1} \mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n, \beta_0, \beta_1)$$

We want to find the Maximum likelihood estimates for  $\beta_0$  and  $\beta_1$ !

• Since our samples are independent, we have that

$$\mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n, \beta_0, \beta_1)$$
  
=  $\prod_{i=1}^n \mathbb{P}(Y_i = y_i | X_i = x_i, \beta_0, \beta_1)$   
=  $\prod_{i:y_i=1}^n p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$   
=  $\prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$ 

where

$$p(x_i) = \mathbb{P}(Y_i = 1|x_i) = 1 - \mathbb{P}(Y_i = 0|x_i)$$

• Find  $\hat{\beta_0}$  and  $\hat{\beta_1}$  that maximize

$$\prod_{i=1}^n p(x_i)^{y_i} (1-p(x_i))^{1-y_i} = \prod_{i=1}^n \left(\frac{e^{\beta_0+\beta_1 x}}{1+e^{\beta_0+\beta_1 x}}\right)^{y_i} \left(\frac{1}{1+e^{\beta_0+\beta_1 x}}\right)^{1-y_i}$$

• In logistic regression, we end up with a more complex cost function to optimize

$$\prod_{i=1}^n p(x_i)^{y_i} (1-p(x_i))^{1-y_i} = \prod_{i=1}^n \left(\frac{e^{\beta_0+\beta_1 x}}{1+e^{\beta_0+\beta_1 x}}\right)^{y_i} \left(\frac{1}{1+e^{\beta_0+\beta_1 x}}\right)^{1-y_i}$$

 Generally speaking, a closed-form solution for the maximizer is not available and often maximization techniques such as gradient ascent (or gradient descent on the negative log-likelihood) are considered We will discuss gradient descent soon!

- In case of multiple features, only minor modification is required
- We still try to maximize  $\prod_{i=1}^{n} p(x_i)^{y_i} (1 p(x_i))^{1-y_i}$ , but now we have that

$$p(x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

- We run the maximization to obtain the estimates  $\hat{eta_0},\cdots,\hat{eta_p}$
- In practice, you never have to do the maximization and most software such as R, Python, and Matlab have packages to dot hat numerically for you

#### What Happens for More than Two Classes?

- **Example**: Based on some features such as city, year of education, and number of publications, classify the students of a class into undergrads, Master, and PhDs
- Recall our method of classification in the binary case, we evaluated  $p(x_i)$  which was technically  $\mathbb{P}(Y_i = 1|x_i)$  and if it closer to 1 then our prediction is class one; if it is small, then  $\mathbb{P}(Y_i = 0|x_i) = 1 \mathbb{P}(Y_i = 1|x_i)$  would be large and our prediction is class zero
- One way of interpreting this is evaluating  $\mathbb{P}(Y_i = k | x_i)$  for k = 0 and 1 and the k that produces the largest value for  $\mathbb{P}(Y_i = k | x_i)$  is our predicted label
- Now for K labels, we evaluate P(Y<sub>i</sub> = k|x<sub>i</sub>) for k = 1, 2 · · · , K and the k that produces the largest value for P(Y<sub>i</sub> = k|x<sub>i</sub>) is our predicted label

< □ > < □ > < □ > < □ > < □ > < □ >

#### What Happens for More than Two Classes?

- For K labels, we evaluate  $\mathbb{P}(Y_i = k | x_i)$  for  $k = 1, 2, \dots, K$  and the k that produces the largest value for  $\mathbb{P}(Y_i = k | x_i)$  is our predicted label
- When we have K>2 labels (e.g.,  $y \in \{0, 1, \cdots, 9\}$ ) and p features  $x_1, \cdots, x_p$ , we fit K models parametrized by

Label 1 : 
$$\{\beta_0^{(1)}, \beta_1^{(1)}, \cdots, \beta_p^{(1)}\}$$
  
Label 2 :  $\{\beta_0^{(2)}, \beta_1^{(2)}, \cdots, \beta_p^{(2)}\}$   
:  
Label  $K : \{\beta_0^{(K)}, \beta_1^{(K)}, \cdots, \beta_p^{(K)}\}$ 
(1)

• For this problem, we consider the following form,

$$p_k(m{x}) = \mathbb{P}(Y = k | m{x}) = rac{e^{eta_0^{(1)} + \dots + eta_p^{(1)} x_p}}{e^{\left(eta_0^{(1)} + \dots + eta_p^{(1)} x_p
ight)} + \dots + e^{\left(eta_0^{(K)} + \dots + eta_p^{(K)} x_p
ight)}}$$

• What is the sum of all  $\mathbb{P}(Y_i = k | x_i)$  for a fixed **x**?

#### Let's perform some basic classification tasks in Python!

## The End

メロト メポト メヨト メヨト