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Introduction
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Brief Overview of Maximum Likelihood

Maximum likelihood is a statistical estimation technique

The main goal is to estimate the parameters of a statistical model
given some sample observations

Let x1, · · · , xn be samples from a distribution with some unknown
parameter θ and joint distribution

f (x1, · · · , xn|θ)

the maximum likelihood estimate of θ based on the observations

θ̂ = arg max
θ

f (x1, · · · , xn|θ)

When x1, · · · , xn are i.i.d samples from a distribution f (·), then

f (x1, · · · , xn|θ) = f (x1|θ) · · · f (xn|θ)
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Brief Overview of Maximum Likelihood

Example: There is a normal distribution N (µ, 1) with unknown µ.
Given five samples from this distribution

x1 = 2.5377, x2 = 3.8339, x3 = −0.2588, x4 = 2.8622, x5 = 2.3188;

what is the maximum likelihood estimate of µ?

Solution: If we take 5 independent samples x1, x2, x3, x4, and x5
from a normal distribution N (µ, 1), their joint distribution is

f (x1, x2, x3, x4, x5|µ) =
5∏

i=1

1√
2π

exp

(
−(xi − µ)2

2

)
,

some basic calculus yields µ̂ = x1+x2+x3+x4+x5
5 5 = 2.2587 (why?)
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Classification

In many applications, the response is not a quantitative value and
instead represents a class, e.g., y ∈ {spam, email}, y ∈ {0, 1, · · · , 9}
Yet based on the observation of some features, we would like to
predict the class, i.e., what we refer to as the classification

Regression vs classification
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Classification

Example: Predicting default cases on the credit card (unable to pay
the credit card), based on the income and current balance

Balance is more useful than the income. (why?)
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Binary Classification

In simple regression for a single feature x we fitted a line
y = β0 + β1x to the data

In a binary classification with only one feature, and the corresponding
two classes: class 0 and class 1

Question: Can we do the fit in a way that the sign of β0 + β1x
becomes an indicator of the class for us?

Mathematically, for a given feature xi , making a decision as follows:

yi =

{
1, if β0 + β1xi ≥ 0;
0, if β0 + β1xi < 0.

A smooth function (i.e., Sigmoid or inverse Logit) that takes almost
binary values 0 and 1 based on the sign of the input z

ez

1 + ez
=

{
1, z >> 0;
0, z << 0.

H. Xiao (IFI@GSU) Linear and Logistic Regression Spring 2021 7 / 18



Binary Classification

When we have a smooth approximation of the sign function, learning
the parameters β0 and β1 is numerically easier
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Binary Classification

Trying to treat the classification problem as a regression problem
does not produce reasonable results!

Some probability even becomes negative!
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How Does Binary Classification Work?

Learn β0 and β1 from the training data

Given a test point xi , evaluate β0 + β1xi

Pass this quantity to the smooth sign approximation

p(xi ) =
eβ0+β1xi

1 + eβ0+β1xi

If p(xi ) was closer to 1 our prediction of the class for xi is class one
(e.g., p(xi ) = 0.9) and if p(xi ) was closer to 0 our prediction of the
class for xi is class zero (e.g., p(xi ) = 0.1)

Now that p(·) generates some value between 0 and 1; one immediate
interpretation for it is being the probability of label 1

p(xi ) = P(yi = 1|xi ) = 1− P(yi = 0|xi )

If p(xi ) = 0.9, then the test label is 1 with probability 0.9 and 0 with
0.1
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How to Do the Training for the Simple Logistic
Regression?

Sample observations (x1, y1), · · · , (xn, yn) where yi ∈ {0, 1}
The goal is to determine β0 and β1 such that the probability of
assigning the right labels is maximized

arg max
β0,β1

P(Y1 = y1, · · · ,Yn = yn|X1 = x1, · · · ,Xn = xn, β0, β1)

We want to find the Maximum likelihood estimates for β0 and β1!
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Since our samples are independent, we have that

P(Y1 = y1, · · · ,Yn = yn|X1 = x1, · · · ,Xn = xn, β0, β1)
=
∏n

i=1 P(Yi = yi |Xi = xi , β0, β1)
=
∏

i :yi=1 p(xi )
∏

i :yi=0(1− p(xi ))

=
∏n

i=1 p(xi )
yi (1− p(xi ))1−yi

where
p(xi ) = P(Yi = 1|xi ) = 1− P(Yi = 0|xi )

Find β̂0 and β̂1 that maximize

n∏
i=1

p(xi )
yi (1− p(xi ))1−yi =

n∏
i=1

(
eβ0+β1x

1 + eβ0+β1x

)yi ( 1

1 + eβ0+β1x

)1−yi
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Some Notes on The Logistic Regression

In logistic regression, we end up with a more complex cost function
to optimize

n∏
i=1

p(xi )
yi (1− p(xi ))1−yi =

n∏
i=1

(
eβ0+β1x

1 + eβ0+β1x

)yi ( 1

1 + eβ0+β1x

)1−yi

Generally speaking, a closed-form solution for the maximizer is not
available and often maximization techniques such as gradient ascent
(or gradient descent on the negative log-likelihood) are considered
We will discuss gradient descent soon!
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What Happens for More than One Feature?

In case of multiple features, only minor modification is required

We still try to maximize
∏n

i=1 p(xi )
yi (1− p(xi ))1−yi , but now we

have that

p(xi ) =
eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp

We run the maximization to obtain the estimates β̂0, · · · , β̂p
In practice, you never have to do the maximization and most software
such as R, Python, and Matlab have packages to dot hat numerically
for you
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What Happens for More than Two Classes?

Example: Based on some features such as city, year of education,
and number of publications, classify the students of a class into
undergrads, Master, and PhDs

Recall our method of classification in the binary case, we evaluated
p(xi ) which was technically P(Yi = 1|xi ) and if it closer to 1 then our
prediction is class one; if it is small, then
P(Yi = 0|xi ) = 1− P(Yi = 1|xi ) would be large and our prediction is
class zero

One way of interpreting this is evaluating P(Yi = k |xi ) for k = 0 and
1 and the k that produces the largest value for P(Yi = k |xi ) is our
predicted label

Now for K labels, we evaluate P(Yi = k|xi ) for k = 1, 2 · · · ,K and
the k that produces the largest value for P(Yi = k|xi ) is our
predicted label
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What Happens for More than Two Classes?

For K labels, we evaluate P(Yi = k|xi ) for k = 1, 2, · · · ,K and the k
that produces the largest value for P(Yi = k |xi ) is our predicted label

When we have K > 2 labels (e.g., y ∈ {0, 1, · · · , 9}) and p features
x1, · · · , xp, we fit K models parametrized by

Label 1 : {β(1)0 , β
(1)
1 , · · · , β(1)p }

Label 2 : {β(2)0 , β
(2)
1 , · · · , β(2)p }

...

Label K : {β(K)
0 , β

(K)
1 , · · · , β(K)

p }

(1)

For this problem, we consider the following form,

pk(x) = P(Y = k |x) =
eβ

(1)
0 +···+β(1)

p xp

e

(
β
(1)
0 +···+β(1)

p xp
)

+ · · ·+ e

(
β
(K)
0 +···+β(K)

p xp
)

What is the sum of all P(Yi = k |xi ) for a fixed x?
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Some Practices

Let’s perform some basic classification tasks in Python!
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The End
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