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Bayesian Statistics

Bayesian statistics [url, b] is a mathematical procedure that:

applies probabilities to statistical problems

provides people the tools to update their beliefs

in the evidence of new data

And, Bayesian statistics is built based on:

Bayes theorem

conditional probability
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Bayesian Statistics via an Example

Example 1:

Out of all the 4 championship races (F1) between Niki Lauda and
James Hunt

Niki won 3 times
James won only 1 time

If you were to bet on the winner of next race, who would he be?

New information:

It rained once when James won and once when Nike Won

It is definite that it will rain on the next date

Who would you bet your money on now?
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Bayesian Statistics via an Example

Example 2: Cancer diagnosis [url, a]

Assume that 1% of a population have cancer

A screening test has 80% sensitivity and 95% specificity

Given a person have a positive result

What is the change that this person actually has the cancer?

P(cancer |positiveresult) ≈ 14%

Most positive results are actually false alarms

Sensitivity:

True positive rates
Given a person has cancer, the chance that the test will say positive

Specificity:

True negative rates
Given a person does not has cancer, the chance that the test will say
negative
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Bayesian Statistics via an Example

Example 2: Cancer diagnosis [url, a]

Assume that 1% of a population have cancer Prior Knowledge

A screening test has 80% sensitivity and 95% specificity Data

Given a person have a positive result Data

What is the change that this person actually has the cancer?

P(cancer |positiveresult) ≈ 14% Updated belief

Most positive results are actually false alarms

Sensitivity:

True positive rates
Given a person has cancer, the chance that the test will say positive

Specificity:

True negative rates
Given a person does not has cancer, the chance that the test will say
negative
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Conditional Probability and Bayes Theorem

Conditional Probability: Probability of an event A given B equals
the probability of B and A happening together divided by the
probability of B

P(A|B) =
Blue Area

Blue Area + Red Area
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Conditional Probability and Bayes Theorem

P(A|B) = P(A∩B)
P(B)

P(B|A) = P(A∩B)
P(A) ⇒ P(A ∩ B) = P(B|A)P(A)

Bayes’ Theorem tell us that

P(A|B) =
P(B|A)P(A)

P(B)

Example 1
A: Niki wins; P(A) = 1

4
B: Event of raining; P(B) = 2

4
P(B|A) = 1
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Bootstrap General Framework

Suppose a black-box calculates α̂ from a sample set, e.g., a
coefficient in linear or logistic regression

We are interested in estimating the variability of α̂ without examining
many new sample sets

Denoting the first bootstrap data set by Z ∗1, we use Z ∗1 to produce
a new bootstrap estimate for α, which we call α̂∗1

This procedure is repeated B (say 100 or 1,000) times, in order to
produce B different bootstrap data sets, Z ∗1,Z ∗2, · · · ,Z ∗B , and the
corresponding α estimates α̂∗1, · · · , α̂∗B
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Bayesian Inference

Bayes’ Theorem used in practice

During the search for Air France 447, from 2009-2011, knowledge
about the black box location was described via probability – i.e.,
using Bayesian inference

Eventually, the black box was found in the read area
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Bayesian Inference

Bayesian inference can help us to:

update knowledge, as data is obtained

It can also be used for

parameter estimation

density estimation

regression function estimating

...

H. Xiao (IFI@GSU) Bayesian Statistics Spring 2021 11 / 37



Bayesian Inference

Formally:

Prior distribution π(β): what you know about parameter β,
excluding the information in the data

Likelihood f (y |β): based on modeling assumptions, how likely to
observe y if the truth is β

Posterior distribution stating what we know about β, combining
the prior with the data:

P(β|y) ∝ f (y |β)× π(β)

posterior ∝ likelihood × prior
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Bayesian Inference - How much does she weigh?

How much does she weigh?

Three measures for a dog: 13.9 lb, 17.5 lb, and 14.1 lb

Likelihood: f (x1, x2, x3|µ, σ2) = φ( x1−µσ )φ( x2−µσ )φ( x3−µσ )
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Bayesian Inference - How much does she weigh?

P(µ|m) =
P(m|µ)P(µ)

P(m)

m - measurement; µ - weight

P(µ) - prior

P(mµ) - likelihood

P(µ|m) - posterior

Start by making assumptions:

assume dog’s weight is equally likely to be 13 pounds or 15 pounds
or 1 pounds or 1,000,000 pounds

assume a uniform prior: P(µ) is constant for all values

So by Bayes’ Theorem: P(µ|m) = P(m|µ)

3∏
i=1

φ(
xi − µ
σ

) =
1

σ3(π)3/2
exp

(
−
∑

i=1(xi − µ)2

2σ2

)
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Bayesian Inference - How much does she weigh?

Last time she weighted 14.2 pounds

assume an prior µ ∼ N (14.2, 0.52)

So by Bayes’ Theorem: P(µ|m) ∝ P(m|µ)P(µ)

assume dog’s weight is equally likely to be 13 pounds or 15 pounds
or 1 pounds or 1,000,000 pounds

assume a uniform prior: P(µ) is constant for all values

So by Bayes’ Theorem: P(µ|m) = P(m|µ)

3∏
i=1

φ(
xi − µ
σ

)φ(
µ− 14.2

0.5
)

=
1

σ3(π)3/2
exp

(
−
∑

i=1(xi − µ)2

2σ2
−
∑

i=1(µ− 14.2)2

2× 0.52

)
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Bayesian Inference - How much does she weigh?

Bayesian vs. not

The Bayesian estimate ignores 17.5 lb like an outlier

The distribution is narrower. Confidence is greater

The answer is probably much closer to correct
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Bayesian Linear Regression

Ordinary Least Squares (OLS)

y = β0 + β1x1 + β2x2 + ε

y = Xβ + ε

RSS(β) =
∑n

i=1(yi − β>xi )2

β̂ = (X>X )−1X>y
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Bayesian Linear Regression

Bayesian linear regression:

yi = x>i β + εi , εi ∼ N (0, σ2)

The likelihood:

p(y |X , β) ∝ (σ2)−n/1) exp

(
− 1

2σ2
(y − Xβ)>(y − Xβ)

)
The prior β|σ2 ∼ N (µ0, σ

2Λ−10 ):

p(β|σ2) ∝ (σ2)−k/2 exp

(
− 1

2σ2
(β − µ0)>Λ0(β − µ0)

)
The posterior:

p(β|y ,X ) ∝ p(β|σ2)p(y |X , β)
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Bayesian Linear Regression

The prior β|σ2 ∼ N (µ0, σ
2Λ−10 ):

p(β|σ2) ∝ (σ2)−k/2 exp

(
− 1

2σ2
(β − µ0)>Λ0(β − µ0)

)
The posterior:

(σ2)−(k+n)/2 exp

(
− 1

2σ2
(β − µ0)>Λ0(β − µ0)− 1

2σ2
(y − Xβ)>(y − Xβ)

)

p(β|y ,X ) ∼ N (µn,Λn)

Λn = (X>X + Λn), µn = Λ−1n (X>X β̂ + Λ0µ0)

(β−µ0)>Λ0(β−µ0)+(y−Xβ)>(y−Xβ) = (β−µn)>Λn(β−µn)+C
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Bayesian Linear Regression

In the example above, the posterior of β follows a known distribution
(multivariate normal)

Posterior inference is straightforward

posterior mean, variance

hypothesis testing

Summarizing the posterior involves integrals.

For simple problems, this can be done with pencil and paper

For hard problems, we usually use MCMC
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MCMC Sampling

Markov Chain Monte Carlo (MCMC) sampling is

the predominant method for Bayesian inference

approximate the posterior by drawning samples from the posterior
distribution

E.g.

posterior mean can be approximated by the sample mean of MCMC
samples

posterior sd can be approximated by the sd of the MCMC samples

percentile, confidence interval, etc.
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Shrinkage Prior and Bayesian Lasso

The lasso estimates:

β̂lasso = arg min
β
||y − Xβ||22 + λ

p∑
j=1

|βj |

||y − Xβ||22 - goodness of fit

λ
∑p

j=1 |βj | - penalty

Tibshirani (1996):

lasso estimates can be viewed as the posterior mode

when β’s follow iid Laplace (or double-exponential) priors
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Shrinkage Prior and Bayesian Lasso

The likelihood:

p(y |β, σ2) = N (y |Xβ, σ2In)

The prior:

p(β|γ) = (τ/2)p exp(−τ ||β||)1
The lasso estimates equal the mode of the posterior distribution of β

β̂L = arg max
β

p(β|y , σ2, τ)

n is the sample size, p is the number of covariates
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The regression example

How Bayesian statistics convinced me to hit the gym.

weight as a function of height

weight percentile

The complete example can be found here:
https://towardsdatascience.com/how-bayesian-statistics-convinced-me-to-
hit-the-gym-fa737b0a7ac
More examples for using JAGS:
https://www4.stat.ncsu.edu/reich/ABA/notes/JAGS.pdf
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Bayesian Lasso Example

Election prediction using census data.
References:

https://www4.stat.ncsu.edu/reich/ABA/code/BLASSO

https://github.com/ncsu-statistics/bayesian-learning-with-R
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Naive Bayesian Classifier
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Naive Bayesian Classifier

To classify means to determine the highest P(Hi |X ) among all
classes C1, · · · ,Cm

If P(H1|X ) > P(H0|X ), then X buys computer
If P(H0|X ) > P(H1|X ), then X does not buy computer
Calculate P(Hi |X ) using the Bayes Theorem

P(Hi |X ) =
P(Hi )P(X |Hi )

P(X )
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Naive Bayesian Classifier: Class Prior Probability

P(Hi ) is class prior probability that X belongs to a particular class Ci

Can be estimated by ni/n from training data samples
n is the total number of training data samples
ni is the number of training data samples of class Ci
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H1: Buys computer = yes, P(H1) = 6/10 = 0.6

H0: Buy computer = no, P(H0) = 4/10 = 0.4

P(Hi |X ) =
P(Hi ) P(X |Hi )

P(X )
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Naive Bayesian Classifier: Descriptor Prior Probability

P(X ) is prior probability that X

Probability that observe the attribute values of X
Suppose X = (x1, · · · , xp) and they are independent, then
P(X ) = P(x1) · · ·P(xp)
p(xi ) = ni

n , where ni is the number of training samples having value xi
for feature Ai ; n is the total number of training samples
constant for all classes
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X = (age : 31 · 40, income : medium, student : yes, credit : fair)
P(age = 31 · 40) = 3/10, P(income : medium) = 3/10
P(student = yes) = 5/10, P(credit = fair) = 7/10
P(X ) = P(age = 31 · 40) · P(income : medium) · P(student =
yes) · P(credit = fair) = 0.3 · 0.3 · 0.5 · 0.7 = 0.0315

P(Hi |X ) =
P(Hi )P(X |Hi )

P(X )
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Naive Bayesian Classifier: Descriptor Posterior Probability

P(X |Hi ) is posterior probability of X given Hi

Probability that observe X in class Ci

Suppose X = (x1, · · · , xp) and they are independent, then
P(X |Hi ) = P(x1|Hi ) · · ·P(xp|Hi )
p(xi ) =

ni,j
ni

, where ni,j is the number of training samples in class Ci

having value xi for feature Ai ; ni is the total number of training
samples in class C i
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X = (age : 31 · 40, income : medium, student : yes, credit : fair)

H1 = X buys a computer

n1 = 6, n11 = 2, n21 = 2, n31 = 4, n41 = 5

P(X |H1) = 2
6 ×

2
6 ×

4
6 ×

5
6 = 5

81 = 0.062

P(Hi |X ) =
P(Hi ) P(X |Hi )

P(X )
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X = (age : 31 · 40, income : medium, student : yes, credit : fair)

H0 = X does not buy a computer

n0 = 4, n10 = 1, n20 = 1, n30 = 1, n40 = 2

P(X |H1) = 1
4 ×

1
4 ×

1
4 ×

2
4 = 1

128 = 0.0078

P(Hi |X ) =
P(Hi ) P(X |Hi )

P(X )
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Bayesian vs Frequentist

Pros:

Scientific knowledge incorporation via the prior

More information for decision making

Computationally easier for complex model, e.g., hierarchical models

A framework to incorporate data/info from multiple sources

Cons:

Picking a prior is subjective

Computing can be slow or unstable for some problems

Reference: https://www4.stat.ncsu.edu/reich/ABA/notes/Intro.pdf
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Reference

http://faculty.washington.edu/kenrice/BayesIntroClassEpi2018.pdf.

https://www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-
beginners-simple-english/.
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The End
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