IFI 9000 Analytics Methods Neural Networks & Deep Learning

by Houping Xiao

Spring 2021

H. Xiao (IFI@GSU)

Introduction

イロト イヨト イヨト

Recurrent neural networks

- While CNNs work quite promising for images, they may not be the best modeling tools for other data sets such as time series data
- For temporal, or time-series data and stream inputs (e.g., text streams), recurrent neural networks (RNNs) are of major attention

- We assume a sequence of data is streamed as N time instances, and mapped to a sequence of response (here of the same length).
- For now let's assume that the input and output have similar lengths

RNN: governing equations

Remember in standard neural network the output of the hidden layer was in the form *h* = σ(*Wxx* + *b*)

• In RNNs the input is a stream x(t) and we have another coefficient matrix that makes the current hidden output dependent on the previous one:

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W} \left(\begin{array}{c} \boldsymbol{h}^{(t-1)} \\ \boldsymbol{x}^{(t-1)} \end{array} \right) + \boldsymbol{b} \right),$$
$$\boldsymbol{y}^{(t)} = \sigma \left(\tilde{\boldsymbol{W}} \boldsymbol{h}^{(t)} + \tilde{\boldsymbol{b}} \right), t = 1, \cdots, N$$

• Training cost per sample: $\mathcal{L}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \sum_{t=1}^{N} L\left(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}\right)$

Types of RNN and applications

• The following architecture is many-to-many, with the input and output having the same length

 Application example is named-entity recognition (classify unstructured text into predefined classes)

Construction of the intervention of the construction of the constr

• LI > 4 mil > 4

• The following architecture is many-to-one

Application example is sentiment classification (review systems, scoring systems)

• The following architecture is one-to-one

• This is somehow equivalent to traditional one-layer network (real-time mapping)

• The following architecture is one-to-many

• Application example is music generation, image captioning

Types of RNN and applications

• The following architecture is many-to-many, with the input and output having different lengths

• Application example is machine translation, video captioning

[DETECT LANGUAGE	PERSIAN	ENGLISH	SPANISH	\sim	÷	PERSIAN	ENGLISH	SPANISH	~				
	Be the Change	You Wish	To See in	the World		×		بينيد	اهيد در جهان ب	باشيد كه مي خو	تغييرى	همان	☆	
	Ų ■)				43/5000	•	u))					1	Ś	

Deep RNNs

• All the architectures we explained so far can become deep and layered

• In practice we do not need very deep RNNs (unlike standard DNNs which can be very deep)

- Hard to train and vanishing gradient
- Difficulty accessing information from long time ago
- Two main variants of RNNs:
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRUs)
- To learn more and see some cool applications see: https://www.youtube.com/watch?v=6niqTuYFZLQt=1850s

LSTM: Long Short-term Memory

- LSTM developed for resolving short-term memory, i.e., RNN can forget what it seen in longer sequences
- LSTM uses "gates" to regulate the flow of information, keep important information or throw away unimportant information

12 / 19

Customers Review 2,491

Thanos

September 2018

Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

< ∃ ►

A Box of Cereal \$3.99

LSTM

- Keep or forget information using gates
- Gates are different neural networks, contains sigmoid functions
- Sigmoid squishes values between 0 (forgotten) and 1 (kept).

LSTM: forget gate

- Based on the previous hidden state and current input, the forget gate decides what information should be forgotten or kept
- output value closer to 0 means to forget, and the closer to 1 means keep

LSTM: input gate

- Based on the previous hidden state and current input, the input gate uses sigmoid to decide what information should be updated
- uses tanh function to regulate the network
- the sigmoid output will decide which information is important to keep from the tanh output

16 / 19

• Based on the previous cell state, output from the input gate, to update the new cell state.

★ Ξ >

Image: Image:

LSTM: output gate

- Output the new cell state
- output the hidden state, based on the previous hidden state and the current input

The End

メロト メポト メヨト メヨト