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Introduction
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Recurrent neural networks

@ While CNNs work quite promising for images, they may not be the
best modeling tools for other data sets such as time series data
e For temporal, or time-series data and stream inputs (e.g., text
streams), recurrent neural networks (RNNs) are of major attention
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@ We assume a sequence of data is streamed as N time instances, and
mapped to a sequence of response (here of the same length).

@ For now let's assume that the input and output have similar lengths
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RNN: governing equations

@ Remember in standard neural network the output of the hidden layer
was in the form h = o(Wxx + b)
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@ In RNNs the input is a stream x(t) and we have another coefficient
matrix that makes the current hidden output dependent on the

previous one:
h(t—1)
h(t) =0 <W< X(til) > +b> ,

y(t):a<Wh(t)+E),t:1,---,N

e Training cost per sample: L(y,y) = Zt 1 (y(t y(t))
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Types of RNN and applications

@ The following architecture is many-to-many, with the input and
output having the same length
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@ Application example is named-entity recognition (classify
unstructured text into predefined classes)
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Types of RNN and applications

@ The following architecture is many-to-one
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@ Application example is sentiment classification (review systems,
scoring systems)
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Types of RNN and applications

@ The following architecture is one-to-one
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@ This is somehow equivalent to traditional one-layer network
(real-time mapping)
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Types of RNN and applications

@ The following architecture is one-to-many
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@ Application example is music generation, image captioning
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Types of RNN and applications

@ The following architecture is many-to-many, with the input and
output having different lengths
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@ Application example is machine translation, video captioning
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Deep RNNs

@ All the architectures we explained so far can become deep and
layered

Layer L

Layer 2

Layer 1

@ In practice we do not need very deep RNNs (unlike standard DNNs
which can be very deep)
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Problems with standard RNNs and remedies

Hard to train and vanishing gradient

Difficulty accessing information from long time ago
Two main variants of RNNs:

o Long Short-Term Memory (LSTM)

o Gated Recurrent Units (GRUs)

To learn more and see some cool applications see:
https://www.youtube.com/watch?v=6niqTuYFZLQt=1850s
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https://www.youtube.com/watch?v=6niqTuYFZLQ&t=1850s

LSTM: Long Short-term Memory

@ LSTM developed for resolving short-term memory, i.e., RNN can
forget what it seen in longer sequences
@ LSTM uses “gates” to regulate the flow of information, keep
important information or throw away unimportant information
LSTM

forget gate cell state

input gate output gate
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sigmoid pomtmse pomtmse vector
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LSTM: a toy example

Customers Review 2491

Thanos

September 2018

Verified Purchase

Amazing! This box of cereal gave me a
perfectly balanced breakfast, as all -
things should be. | only ate half of it

but will definitely be buying again!

© WSy

A Box of Cereal
$3.99

H. Xiao (IFIQGSU) Deep Learning Spring 2021 13/19



LSTM

@ Keep or forget information using gates
@ Gates are different neural networks, contains sigmoid functions

e Sigmoid squishes values between 0 (forgotten) and 1 (kept).
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LSTM: forget gate

@ Based on the previous hidden state and current input, the forget gate
decides what information should be forgotten or kept

@ output value closer to 0 means to forget, and the closer to 1 means
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LSTM: input gate

@ Based on the previous hidden state and current input, the input gate
uses sigmoid to decide what information should be updated

@ uses tanh function to regulate the network
@ the sigmoid output will decide which information is important to keep

from the tanh output

pointwi pointwi vector
multiplication addition concatenation

sigmoid tanh
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LSTM: cell state

@ Based on the previous cell state, output from the input gate, to
update the new cell state.
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sigmoid tanh pointwi pointwi vector
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LSTM: output gate

@ Qutput the new cell state

@ output the hidden state, based on the previous hidden state and the

current input
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The End
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