
IFI 9000 Analytics Methods
Neural Networks & Deep Learning

by Houping Xiao

Spring 2021

H. Xiao (IFI@GSU) Deep Learning Spring 2021 1 / 44

Introduction

H. Xiao (IFI@GSU) Deep Learning Spring 2021 2 / 44

We are going to cover ...

Matrix notation for linear models, especially multi-ouput models

Structure of the brain

Neural network models in matrix form

Gradient descent technique for minimization

NN fitting objective and (stochastic) gradient descent

Introduction to signal processing and linear filtering

Convolutional neural network architectures

Other variants of NNs, Recurrent NNs, U-Nets, etc

H. Xiao (IFI@GSU) Deep Learning Spring 2021 3 / 44

Vectors and Matrices

A vector is a one dimensional array of numbers

a =

a1
a2
...
an

 ∈ Rn, e.g. a =

0
1
2
3

 ∈ R4.

A matrix is a 2-dimension array of numbers

Am×n =

a11 · · · a1n
a21 · · · a2n
...

. . .
...

am1 · · · amn

 ∈ Rm×n, e.g. A =

(
0 1 2
3 4 5
6 7 8

)
∈ R3×3.

H. Xiao (IFI@GSU) Deep Learning Spring 2021 4 / 44

Matrix transpose and product

Transpose of a matrix:

A =

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 , A> =

a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 .

The product of two matrices A and B with compatible sizes n ×m
and m × p is denoted by AB ∈ Rn×p: a11 · · · a1n

a21 · · · a2n
.
.
.

. . .
.
.
.

am1 · · · amn

 b11 · · · b1n
b21 · · · b2n
.
.
.

. . .
.
.
.

bm1 · · · bmn

 =

 ∑m
k=1 a1kbk1 · · ·

∑m
k=1 a1kbkp∑m

k=1 a2kbk1 · · ·
∑m

k=1 a2kbkp
.
.
.

. . .
.
.
.∑m

k=1 ankbk1 · · ·
∑m

k=1 ankbkp

H. Xiao (IFI@GSU) Deep Learning Spring 2021 5 / 44

Linear models in matrix form

Typically, vectors and matrices are denoted as lowercase uppercase
bold letters, respectively

We have seen that

y = b0 + w1x1 + · · ·+ wpxp = w0 + x>w

where

w =

 w1
w2

.

.

.
wp

 , x =

 x1
x2
.
.
.
xp

 .

So when we fit the model and want to evaluate it for a number of
test points x t1 , x t2 , · · · , x tn all we need to do is the following

y t =

 y t1
...
y tn

 =

 b0
...
b0

+

x t11 x t12 · · · x t1p
x t21 x t22 · · · x t2p
...

...
. . .

...
x tn1 x tn2 · · · x tnp

w

H. Xiao (IFI@GSU) Deep Learning Spring 2021 6 / 44

Multi-response linear models in matrix form

For a linear model with m responses

y1 = b1 + w1,1x1 + · · ·+ w1,pxp

y2 = b2 + w2,1x1 + · · ·+ w2,pxp

...

ym = bm + wm,1x1 + · · ·+ wm,pxp

which can be written in the matrix form as

y = b + Wx

where

b W x

H. Xiao (IFI@GSU) Deep Learning Spring 2021 7 / 44

Matrices as a way of linear transformation

H. Xiao (IFI@GSU) Deep Learning Spring 2021 8 / 44

Fitting multi-response linear models

An edge between two nodes is present when Wi ,j 6= 0

Suppose we have the training samples (x1, y1), · · · , (xN , yN). To fit
the model to the training data, we only need to miniize the following
RSS:

minimize
W ,b

N∑
i=1

||yi − b −Wxi ||2

H. Xiao (IFI@GSU) Deep Learning Spring 2021 9 / 44

Structure of the brain

H. Xiao (IFI@GSU) Deep Learning Spring 2021 10 / 44

Nonlinear activation applied to a vector

Sigmoid function

σ(x) =
ex

1 + ex

when sigmoid function is applied to a vector or a matrix, it applies to
each component individually

σ

 0
1
2

 =

e0

1+e0
e1

1+e1
e2

1+e2

Another widely used activation is the rectified linear unit (ReLU):

ReLU(x) = max(x , 0)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 11 / 44

Standard architecture of neural networks

A neural network consists of a sequence of multi-output linear units
followed by nonlinear activations

y1 = σ1(W1x + b1)

y2 = σ2(W2y1 + b2)

...

yL = σL(WLyL−1 + bL)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 12 / 44

Standard architecture of neural networks

Normally all activations are taken to be identical except the last layer

If we have regression problem, often no activation is used at the
output, i.e.,

yL = WLyL−1 + bL

For classification problems, often a soft-max unit is used at the
output, i.e., for y = [y1, · · · , ym]>

σL(yi) =
eyi∑m
j=1 e

yj
, i = 1, · · · , L.

Example:
0.5
1.8
−2.3
0.9
0.3

 soft-max
→

0.14
0.52
0.01
0.21
0.12

H. Xiao (IFI@GSU) Deep Learning Spring 2021 13 / 44

How to train a neural network

For the proposed architecture, we need to learn W1, · · · ,WL and
b1, · · · ,bL

Let’s first derive the function that relates x to yL. Lets define

fl(z) = σl(Wlz
¯

+ bl),

then we have
yL = fL(yL−1)

= fL(fL−1(yL−2))
...
= fL(fL−1(fL−2(1(x) · · ·)))

Basically,

yL =M(x), where M(x) = fL(fL−1(fL−2(1(x) · · ·)))

H. Xiao (IFI@GSU) Deep Learning Spring 2021 14 / 44

How to train a neural network

Suppose we have the training samples (x (1), y (1)), · · · , (x (N), y (N))
For regression problems we normally skip an activation in the last
layer and try to solve the following minimization

minimize
W1,··· ,WL,b1,··· ,bL

1

N

N∑
n=1

||y (n) −M
(
x (n)

)
||2

For classification problems we use a soft-max in the last layer.
Suppose having K classes, then y (n) are vectors of length K , where
for each sample the corresponding index is active

minimize
W1,··· ,WL,b1,··· ,bL

1

N

N∑
n=1

H
(
y (n),M

(
x (n)

))
The central objective is the cross-entropy, for y and y ′ of length K

H(y , y ′) = −
K∑

k=1

yk log y ′k

H. Xiao (IFI@GSU) Deep Learning Spring 2021 15 / 44

Gradient descent for minimization

We saw that our fitting problem boils down to a minimization
problem

min
p

C(p)

in our case p includes all the unknown bmW1, · · · ,WL,b1, · · · ,bL

and C is either one of the objectives in the previous slide

Assuming p ∈ RL, a numerical way of minimization is to start from a
point p(0) and iteratively perform the following steps

p(k+1) = p(k) − η5 C|p=p(k) , where 5 C =

∂C/∂p1
∂C/∂p2

...
∂C/∂pL

η is called the learning rate

Let’s go through a simple example to review how gradient descent
works
H. Xiao (IFI@GSU) Deep Learning Spring 2021 16 / 44

Gradient descent for minimization

Lets consider the very simple objective

C(p1, p2) = (1− p1)2 + (1− p2)2 − 2 exp(−3p21 − 3p22)

The gradient can be calcualted as

5C =

(
2(p1 − 1) + 12p1 exp(−3p21 − 3p22)
2(p2 − 1) + 12p2 exp(−3p21 − 3p22)

)
We can see that this objective has multiple local minimizers (two)

Depending on where we start from we may land in either one

A too small LR can make the minimization slow

A too large LR can also make it slow or never converging!

LR can affect which minimizer we converge to, but this is beyound
our control

OVO is usually more reliable, however for large number of classes OVA is
computationally more desirable

H. Xiao (IFI@GSU) Deep Learning Spring 2021 17 / 44

Review stochastic gradient descent

Recall when we had N training samples (x (1), y (1)), · · · , (x (N), y (N))
our fitting objective was in one of the forms:

min
p

1

N

N∑
n=1

||y (n) −Mp

(
x (n)

)
||2 min

p

1

N

N∑
n=1

H
(
y (n),Mp

(
x (n)

))
Here p is a hyper parameter representing all our unknowns
W1, · · · ,WL,b1, · · · ,bL.
In other words, we are interested in objectives of the form

C(p) =
1

N

N∑
n=1

Cn(p)

where Cn only depends on the sample (x (n), y (n))
Notice that to calculate 5C we need to calculate N gradients

5C(p) =
1

N

N∑
n=1

5Cn(p)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 18 / 44

Review stochastic gradient descent

5C(p) =
1

N

N∑
n=1

5Cn(p)

Since gradient calculation can be computationally expensive, in
stochastic GD, at each minimization iteration we pick a random
subset of all the samples B ⊂ {1, 2, · · · ,N} and use it as an
approximation of the gradient

5C(p) ≈ 1

|B|
∑
n∈B
5Cn(p)

If B is too small our gradient approximation may be too off!

On the other hand large B may require a lot of gradient calculations

Usually, after selecting the batch size, NB we split our N data
samples into N/NB batches and in each GD iteration use one batch

Each SGD iteration goes through one batch. Each epoch indicates
going through the whole training set
H. Xiao (IFI@GSU) Deep Learning Spring 2021 19 / 44

Back propagation

This is another terminology that you probably hear a lot in deep
learning

Recall that you had to calculate the derivative with respect to each
sample and each sample function is a complicated nested function,
e.g.,

Cn =
∣∣∣∣∣∣y (n) − fL(fL−1(fL−2(1(x) · · ·)))

∣∣∣∣∣∣2 , , fl(z) = σl(Wlz + bl)

Back propagation is simply the application of the chain rule to
calculate the derivative of nested functions like Cn in terms of all the
unknown parameters W1, · · · ,WL,b1, · · · ,bL

Since the actual story goes through a lot of indexing complications,
let me explain things via a simple example

H. Xiao (IFI@GSU) Deep Learning Spring 2021 20 / 44

Back propagation, chain rule simple example

Find the derivative of the following function at w = 2:

f (w) = (sin(w2 + 1))2

Solution: Notice that

f = g1(g2(g3(w))); g1(g2) = g2, g2(g3) = sin(g3), g3(w) = w2 + 1

and use the chain rule

∂f

∂w
=
∂g1
∂w

=
∂g1
∂g2

∂g2
∂g3

∂g3
∂w

= 2 sin(5)× cos(5)× 4

Some useful videos about back propagation:

https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8

H. Xiao (IFI@GSU) Deep Learning Spring 2021 21 / 44

https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8

Back propagation

Use chain rule to derive

∂Ci
∂βk0,m0

,
∂Ci

∂αm0,p0

H. Xiao (IFI@GSU) Deep Learning Spring 2021 22 / 44

Back propagation

Last layer sensitivity:

∂Ci
∂βk0,m0

= ∂Ci
∂zi,k0

∂zi,k0
∂βk0,m0

= 2(σz(β>k0yi)− z
′
i ,k0

)σ
′
z(β>k0yi)yi ,m0

= δi ,k0yi ,m0

H. Xiao (IFI@GSU) Deep Learning Spring 2021 23 / 44

Back propagation

Other layers sensitivity:

∂Ci
∂αk0,m0

=
∑K

k=1
∂Ci
∂zi,k

∂zi,k
∂yi,m0

∂yi,m0
∂αk0,m0

=
∑K

k=1 2(σz(β>k yi)− z
′
i ,k)σ

′
z(β>k yi)βk,m0σ

′
y (α>m0

xi)xi ,p0
= σ

′
y (α>m0

xi)
(∑K

k=1 δi ,kβk,m0

)
xi ,p0 = δ̂i ,m0xi ,p0

H. Xiao (IFI@GSU) Deep Learning Spring 2021 24 / 44

Sensitivity summary:

∂Ci
∂βk0,m0

= δi ,k0yi ,m0 ,
∂Ci

∂αm0,p0

= δ̂i ,m0xi ,p0

H. Xiao (IFI@GSU) Deep Learning Spring 2021 25 / 44

Using a validation set to control the minimization

As you observed in the previous slides gradient descent gradually
decreases the RSS (or cross entropy cost) to find a minimizer

One way to avoid over-fitting, is to use a “validation set”,
independent of the training set and stop the gradient descent
iterations when the validation error starts to increase

H. Xiao (IFI@GSU) Deep Learning Spring 2021 26 / 44

Regularization of neural networks to avoid overfitting

Similar to linear models there are variety of techniques to avoid
over-fitting in neural networks

L2 regularizers (similar to Ridge)
L1 regularizers (Similar to LASSO)
Dropout

See video: https://www.youtube.com/watch?v=ARq74QuavAo
See papers: Paper 1

H. Xiao (IFI@GSU) Deep Learning Spring 2021 27 / 44

https://www.youtube.com/watch?v=ARq74QuavAo
https://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

Convolutional neural networks

Deep learning has shown a lot of promise in classifying images

H. Xiao (IFI@GSU) Deep Learning Spring 2021 28 / 44

Linear filtering and images

Convolution is a linear operator widely used in image and signal
processing

Depending on the type of filter we pick for K the output image can
have different properties (blurred, sharpened, edges detected, etc)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 29 / 44

Examples of image convolution with different kernels

If the filters are selected wisely, their output can be considered as
alternative features to pixels

In a CNN, we let the neural network learn these filters! In other
words, CNN wisely chooses the right features that are the best for
prediction

For color images (RGB) we can have 3D filters each filter applicable
to one channel

H. Xiao (IFI@GSU) Deep Learning Spring 2021 30 / 44

Convolutional layers

We can define as many 2D or 3D convolutional filters (here 3 3D
filters of size 3× 3× 3)

The total number of parameters that need to be learnt for this layer
is going to be 3× (27 + 1)

An input image of 6× 6× 3 is mapped to a tensor of size 4× 4× 3

H. Xiao (IFI@GSU) Deep Learning Spring 2021 31 / 44

Max pooling

Is another operation that allows us to reduce the input size by taking
a max operation over smaller windows across the image

H. Xiao (IFI@GSU) Deep Learning Spring 2021 32 / 44

Recurrent neural networks

While CNNs work quite promising for images, they may not be the
best modeling tools for other data sets such as time series data

For temporal, or time-series data and stream inputs (e.g., text
streams), recurrent neural networks (RNNs) are of major attention

We assume a sequence of data is streamed as N time instances, and
mapped to a sequence of response (here of the same length).

For now let’s assume that the input and output have similar lengths

H. Xiao (IFI@GSU) Deep Learning Spring 2021 33 / 44

RNN: governing equations

Remember in standard neural network the output of the hidden layer
was in the form h = σ(Wxx + b)

In RNNs the input is a stream x(t) and we have another coefficient
matrix that makes the current hidden output dependent on the
previous one:

h(t) = σ

(
W
(

h(t−1)

x (t−1)

)
+ b

)
,

y (t) = σ
(
W̃ h(t) + b̃

)
, t = 1, · · · ,N

Training cost per sample: L(y , ŷ) =
∑N

t=1 L
(
y (t), ŷ (t)

)
H. Xiao (IFI@GSU) Deep Learning Spring 2021 34 / 44

Types of RNN and applications

The following architecture is many-to-many, with the input and
output having the same length

Application example is named-entity recognition (classify
unstructured text into predefined classes)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 35 / 44

Types of RNN and applications

The following architecture is many-to-one

Application example is sentiment classification (review systems,
scoring systems)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 36 / 44

Types of RNN and applications

The following architecture is one-to-one

This is somehow equivalent to traditional one-layer network
(real-time mapping)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 37 / 44

Types of RNN and applications

The following architecture is one-to-many

Application example is music generation

H. Xiao (IFI@GSU) Deep Learning Spring 2021 38 / 44

Types of RNN and applications

The following architecture is many-to-many, with the input and
output having different lengths

Application example is machine translation

H. Xiao (IFI@GSU) Deep Learning Spring 2021 39 / 44

Deep RNNs

All the architectures we explained so far can become deep and
layered

In practice we do not need very deep RNNs (unlike standard DNNs
which can be very deep)

H. Xiao (IFI@GSU) Deep Learning Spring 2021 40 / 44

Deep RNNs

One hot encoding is normally used to convert a vocabulary into
digital inputs

It is normally easier and more robust to do the one hot encoding with
the words other than letters

H. Xiao (IFI@GSU) Deep Learning Spring 2021 41 / 44

Problems with standard RNNs and remedies

Hard to train and vanishing gradient

Difficulty accessing information from long time ago

Two main variants of RNNs:

Long Short-Term Memory (LSTM)
Gated Recurrent Units (GRUs)

To learn more and see some cool applications see:
https://www.youtube.com/watch?v=6niqTuYFZLQt=1850s

H. Xiao (IFI@GSU) Deep Learning Spring 2021 42 / 44

https://www.youtube.com/watch?v=6niqTuYFZLQ&t=1850s

Deep RNNs

Is the most recent breakthrough in machine learning started in 2015

Basically once we pass enough samples to a GAN network, it starts
to learn how to generate similar samples

To learn more and see some interesting applications see:
This Video, or This Video
H. Xiao (IFI@GSU) Deep Learning Spring 2021 43 / 44

https://www.youtube.com/watch?v=XOxxPcy5Gr4&t=80s
https://www.youtube.com/watch?v=ehD3C60i6lw

The End

H. Xiao (IFI@GSU) Deep Learning Spring 2021 44 / 44

