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Quick Review: Architecture of Neural Networks

@ A neural network consists of a sequence of multi-output linear units
followed by nonlinear activations

y1 = o1(Wix + by)

y2 = o2(Why; + by)

yo =0 (Wryr—1+ by)
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Quick Review: Gradient Descent

o Recall when we had N training samples (x(), y(M) ... (x(M) y(N)
our fitting objective was in one of the forms:

e () 3 04 (57)
n=1

Here p is the hyper parameter set: Wy,---, W;, by, -+ , b,

@ As a result:

C(p) = Calp) = TC(P) = 1 7 Ca(P)

o Gradient descent with learning rate n and momentum ~:

0.1 =70k + 17 C(p")

Pt = pF — Ok
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Back propagation

@ This is another terminology that you probably hear a lot in deep
learning

@ Recall that you had to calculate the derivative with respect to each
sample and each sample function is a complicated nested function,

e.g.,
Cr= Hy(") — f(f—1(f—a( )H =o(Wiz + b))

@ Back propagation is simply the application of the chain rule to
calculate the derivative of nested functions like C, in terms of all the
unknown parameters Wy, --- Wy, by,--- b

@ Since the actual story goes through a lot of indexing complications,
let me explain things via a simple example
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Back propagation, chain rule simple example

@ Find the derivative of the following function at w = 2:
f(w) = (sin(W2 + 1))2
@ Solution: Notice that

f=gi(g(gz(w)));  g1(g2) = g2, 82(g3) = sin(gs), g3(w) = w? + 1

and use the chain rule

orf Og1  0g1 0g2 0g3 .

— == ===t =2 =) 4

ow Ow  0g»0g3 Ow sin(5) x cos(5) x
@ Some useful videos about back propagation:

o https://www.youtube.com/watch?v=Illg3gGewQ5U
o https://www.youtube.com/watch?v=tleHLnjs5U8
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Back propagation

N
C=%iLlzi—Zl?

_ZN C;
=2 iz Gi
x; €RP — Ci =Yz —20,)?
(i=1,...N)

@ Use chain rule to derive
oC; ocC;
aﬂkoymo ’ ao‘mo,Po
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Back propagation

N
C=3illzi—Z|?
N
= Zi:l Ci

Ci= s (zik — 2,2

Yim = Uy(alxi) Zik = UZ(ﬁZYI)

o Last layer sensitivity:

aC; _ac; 9z
OBig,mg  OZikg OBiy,mg , ,
_ T T
- 2(0-2(5[(0)'/) - Zi,ko)o-z(/gkoyi)yi,mo
= 0j ko Yi,mo
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Back propagation

N
C=3illlzi— ZIP
N
= Zi:lcf

K
Ci= (i — Zi,.k)Q

Yim = oy (i) zik = 02(Byyi)

@ Other layers sensitivity:

ac; _ ZK ac; 0zix O¥img
8ak0,m0 - k=1 azi,k 8yi1m0 aako,mo

K ’ / U
= k=1 2(02(@1—”) - Zi,k)az(»BZYi)/Bk,mko(a;rqoxi)xi,po

/ K ~
= 0, (g Xi) (Zkz1 5i,k5k,mo) Xipy = Oi,moXi.py
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N A >
SK X553 =
LA —SOKLST
P re— ‘A“ S
X € RF — EXSSF << ‘\
(i=1,...N) CEN BT
=5 X352\

Yim = 0y(QyX7) Zik=02(BLyi)
@ Sensitivity summary:
aC,’ 5 aC, (/5\
a2 = OikYim T = 0i,mpXi,
aﬁko,mo hre o’ 8O‘mo,IJO oo
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Using a validation set to control the minimization

@ As you observed in the previous slides gradient descent gradually
decreases the RSS (or cross entropy cost) to find a minimizer

@ One way to avoid over-fitting, is to use a “validation set”,
independent of the training set and stop the gradient descent
iterations when the validation error starts to increase

1

T T
——RSS Cost
0.9 — Validation Set Cost

0.8 Good Stopping Point

RSS Cost

0.4

0 10 20 30 40 50 60 70 80 90 100
iteration
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Regularization of neural networks to avoid overfitting

@ Similar to linear models there are variety of techniques to avoid
over-fitting in neural networks
o L2 regularizers (similar to Ridge)
o L1 regularizers (Similar to LASSO)
e Dropout
@ See video: https://www.youtube.com/watch?v=ARq74QuavAo
@ See papers: Paper 1
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Convolutional neural networks

@ Deep learning has shown a lot of promise in classifying images
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Linear filtering and images

@ Convolution is a linear operator widely used in image and signal

processing
0|1]1|Lf0.40)0
olof1frf1faf 1[4]374 1]
olofof1]1f1 1|2{4]3]3]
oflofo|T]t0 ="11{2]3[4]1
olo[1]1]o]o 1]3]3]1]1
o[1]1]o]o]o 3[3]1]1]o
1[1]o]o]o]o
I K I+K

M N
I*K(m,n):ZZI(m—i,n—j)K(i,j)

i=1 j=1

@ Depending on the type of filter we pick for K the output image can
have different properties (blurred, sharpened, edges detected, etc)
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Examples of image convolution with different kernels

o If the filters are selected wisely, their output can be considered as
alternative features to pixels

@ In a CNN, we let the neural network learn these filters! In other
words, CNN wisely chooses the right features that are the best for
prediction

@ For color images (RGB) we can have 3D filters each filter applicable
to one channel
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Convolutional layers

+ bias)

L ReLU(
ReLU(
—

==

+ bias)

ReLU( + bias)

!

e We can define as many 2D or 3D convolutional filters (here 3 3D
filters of size 3 x 3 x 3)

@ The total number of parameters that need to be learnt for this layer
is going to be 3 x (27 + 1)

@ An input image of 6 x 6 X 3 is mapped to a tensor of size 4 x 4 x 3

H. Xiao (IFIQGSU) DI & GAN Spring 2021 15 /45



Max pooling

@ Is another operation that allows us to reduce the input size by taking
a max operation over smaller windows across the image

12 120 |30 | O

8 [12 ] 2 0 2 x 2 Max-Pool | 20 [ 30
34 | 70 | 37 | 4 112 37

1121100 | 25 | 12
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Recurrent neural networks

@ While CNNs work quite promising for images, they may not be the
best modeling tools for other data sets such as time series data
e For temporal, or time-series data and stream inputs (e.g., text
streams), recurrent neural networks (RNNs) are of major attention
' y@ y@

l | yl(m
Wb hPhgE (k) kMg

Ww,b w,b w,b

ey @ ™

@ We assume a sequence of data is streamed as N time instances, and
mapped to a sequence of response (here of the same length).

@ For now let's assume that the input and output have similar lengths
H. Xiao (IFIQGSU)
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RNN: governing equations

@ Remember in standard neural network the output of the hidden layer
was in the form h = o(Wxx + b)

(1) (2)
Ji yl yl(N)
Wb hORgE 1R kY
W,b W,b W,b
x@® x@ X

@ In RNNs the input is a stream x(t) and we have another coefficient
matrix that makes the current hidden output dependent on the

previous one:
h(t—1)
h(t) =0 <W< X(til) > +b> ,

y(t):a<Wh(t)+E),t:1,---,N

e Training cost per sample: L(y,y) = ZQ’ZI L (y(t),f/(t))
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Types of RNN and applications

@ The following architecture is many-to-many, with the input and
output having the same length

(1) 2
Wb hORgE 1k kg
w,b w,b w,b
pue)) o) )

@ Application example is named-entity recognition (classify
unstructured text into predefined classes)

Rl by 51 ngont [PRIBTSEERIPERSON

atp [FBI ore
roa, wasfred. (GraaHT U1 Kikpairick PERSON | or | Tha New York
~ polor Strzok.

Who Catcized Trump peRson | Texts
Investation after s dsparaging toxts about Presicent.(FRUMBIPERSGN] were uncover
Tinosoy Adem Gokinan o6 | and (IGHAGISISONIGAUGIPEREON]) 13 cArowaL . 201BWASHINGTON CAROWAL

Tump peRson

el ve £ 51 ore

investigations, has been fre for violtig bursau poces, i

ne. [l Cinion PeRsoN | omai and Russia cre.

oA aithe [FBI

ncuiny Aong wih
FA1 are haabeen

oATE o ho s
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Types of RNN and applications

@ The following architecture is many-to-one

y

Wb hORgE kS Y
w,b w,b w,b
ey @ £

@ Application example is sentiment classification (review systems,
scoring systems)
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Types of RNN and applications

@ The following architecture is one-to-one

y®

x®

@ This is somehow equivalent to traditional one-layer network
(real-time mapping)
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Types of RNN and applications

@ The following architecture is one-to-many

y(l) y(Z) y(N)
= k (2) = t ® e l~
(1) w,b h[z) , b h. h. W, b
R —1 " b w1 T wb
l S f [ t [ t
X

@ Application example is music generation
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Types of RNN and applications

@ The following architecture is many-to-many, with the input and
output having different lengths

y(l) y(z)

y(Ny)

W, b W, b W, b W, b Ww,b W, b
— wb | wb wb " wb " wb " wb
2 @ 20V
@ Application example is machine translation
Be the Change You Wish To See in the World X i Glen 0 bl e 4S 28l (g las W
JURIE D} 43/5000 - o s <
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Deep RNNs

@ All the architectures we explained so far can become deep and
layered

Layer L

Layer 2

Layer 1

@ In practice we do not need very deep RNNs (unlike standard DNNs
which can be very deep)

H. Xiao (IFIQGSU) DI & GAN




Deep RNNs

@ One hot encoding is normally used to convert a vocabulary into
digital inputs

\

=
5
(]
o

Hunting
1. Me 0
2. Water

3. Food

4. Cave

5. Go

6. Dinosaur
7. Sleep

8. Stone

9. Hunting
10. Stick

ocococorOOCO O

cocococoocooco oo R
OROOCOOCO OO

@ It is normally easier and more robust to do the one hot encoding with
the words other than letters
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Problems with standard RNNs and remedies

Hard to train and vanishing gradient

Difficulty accessing information from long time ago
Two main variants of RNNs:

o Long Short-Term Memory (LSTM)

o Gated Recurrent Units (GRUs)

To learn more and see some cool applications see:
https://www.youtube.com/watch?v=6niqTuYFZLQt=1850s
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Deep RNNs

@ Is the most recent breakthrough in machine learning started in 2015
@ Basically once we pass enough samples to a GAN network, it starts
to learn how to generate similar samples

(z-pw ]

@9

X~ q(x) )—[ D(x) }—{ X~p(x | 2) ]

x=q()?

1/0

Generated images
INPUT

— =R
b

B Y e

— o oo

== Sketch

User edits

@ To learn more and see some interesting applications see:
This Video, or This Video
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https://www.youtube.com/watch?v=XOxxPcy5Gr4&t=80s
https://www.youtube.com/watch?v=ehD3C60i6lw

Generative Adversarial Networks
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Introduction to GANs

@ GAN is an unsupervised learning technique which allows us to model
complex distributions and sample from them

@ Examples of these complex distributions are the space of natural
images, such as people’s images

@ Intuitively, GANs train a neural network in an “adversarial way" to
map a simple distribution to the target complex distribution
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Basics of GANs

e Simple distributions such as standard (multivariate) normal can be
mapped to more complex distributions once passed through a
function
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Basics of GANs

@ This trick can be applied to complex distributions such as space of
natural images (e.g., celebrities)

f2(2) o<W = G(0.21,037,..,0.55)

4

x = G(2)
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Basics of GANs

e Can we train a neural network Gy(z) that learns to perform this
mapping? (this is essentially what GANs do)

o<W - 6,(0.21,037, ..,055)

= G¢(0.83,0.44, ...,0.61)

4

x = Gy(2)
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Basics of GANs

@ GANs do this task in an adversarial way

@ To understand this better, let's start with a quick overview of logistic
regression

_ D(%,x) l————

1/0
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Basics of GANs: logistic regression overview

@ In binary logistic regression, we have a set of training samples
(Xl’yl)a T 7(XN7_VN)| where x; € RP and yi € {07 1}
@ In logistic regression we assume

. . exp(w T x;
p(x;) = sigmoid(wTx;) = 1—&—e>£p(w"|'2(-) =Py =1|x)=1—-P(y =0|x;)

We aim to maximize the MLE cost:

]P(Yl =Y, YN = )/n|X17 L, XN, W) = va=1 ]P)(% = yi|xi7 W)
= H;’\;/v,-:1 p(xi) Hi:y,-:O(l - p(xi))
= [TiZ, p(x:)" (1 = p(x:)'

o After applying log, and normalization, we aim to maximize
L
5 2 Yvilog(p(x:)) + (1 = yi) log(1 — p(x))
i=1
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Basics of GANs: logistic regression overview

@ In a nutshell, in logistic regression we assume
. . T
p(xi) = sigmoid(w ' x;)

and end up maximizing the objective

N
=" yilos(p(x)) + (1~ i) log(1 — p(x))
i=1

@ In order to make our classifier stronger, we can use a DNN for p(x;),
ie.,

p(xi) = Do(x;)

and end up doing the maximization

N
5D yilog(Dy(x) + (1 - yi)log(1 — Dy(x)
i=1
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Basics of GANs

@ We ended up with

N
55" yilog(Dox)) + (1~ i) log(1 — Dy(x))
i=1

o Considering x; the samples with label 1, and X;, the samples with

label 0,

S\ —

D(%,x)

—\

X

1/0

x

in a more closed-form representation we have:

max Ex log(Dy(x)) + Ex log(1 — Dy(X)

H. Xiao (IFIQGSU)
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Basics of GANs

e We would like X to be generated by G(z), so we setup a competition
between Generator and Discremenator

minrrbax Ex log(Dg,(x)) + Ex log(1 — ng(Ggg(Z))

0y d
fu(2)
L

Z~f2(2)
fx() . i

45 |
$=6(2)

.
f3(G(2)
-

@ Generator tries to fool the discremenator, and discremenator tries to
identify “fake” samples
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Basics of GANs

@ The optimization goes through several gradient ascent steps to
update the discremenator, followed by a gradient descent step to
update the generator

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

o Sample minibatch of m noise samples {1, ..., (™} from noise prior p,(2).

o Sample minibatch of m examples {z(!),...,2(™} from data generating distribution

Pdata()-

o Update the discriminator by ascending its stochastic gradient:

Tuc 3208 (=) 108 (10 (6 ()]
end for
 Sample minibatch of m noise samples {z("), ..., 2(™} from noise prior p,(2).

o Update the generator by descending its stochastic gradient:

Va3 (1-0 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Well-known issues with GANs

e Watch this video to find out what GANs can do
@ Some well-known problems with GANs

o divergence

e vanishing gradient

e unstable gradient

e mode collapse

. ® @ O '
. :
B I S Ee=
sssssssssssssssssssssssssss et
g’ "I l m Xy
N U
° o o o o o
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Woasserstein GANs

@ Is a more robust scheme compared to conventional GANs, derived
based on the sitance between distributions

. p(x)

m(x,y)

lIx =yl
q(y)

plan.ong

DW(pa q) = 7r€|i_|n(f) ?) IE(X,y)N7rHX - yH

e M(p, q) is the space of all joint distributions with marginals p and g
@ In discrete case, this program can be written as an LP
(i, y5) = mijy cij = lIxi = yjl|
WTQOZC,',J'?TM s.t. Zﬂu = Clj,Zﬂu = pi
i J

IJ
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Woasserstein GANs

@ In discrete case, this program can be written as an LP
(m(xi, yj) = mij, cij = [|xi — yjll

min ZC,"J'TF,"J' s.t. Zﬂ',’,j:qj,Zﬂ'i,j:p;
205 i ;
@ Using LP duality we can rewrite D, (p, q) as

Dw(p,q)—TaXZV,pl+ZAJqJ sty + N < G
iy j i |

@ When c is a proper distance, we must have A\ = —v and therefore in
continuum:

Dw(p,q) = sup Exwpf(x) —Eypf(y)
[|f]l.<1

@ 1-Lipschitz function: ||f||. <1 equivalent to |f(x) — f(y)| < ||x — y||
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Woasserstein GANs

@ We showed that the following maximization over the space of
1-Lipschitz functions gives the distance between two distributions

Du(p,q) = sup Exwpf(x) —E,<pf(y)
[IfllL<1

@ So we can conveniently modify this to a min-max game to formulate
the so-called Wasserstein GANs:

min max Exf(x)—-E-f(G(z
in max, xf(x) —Ezf(G(2))

@ Here, f and G can be deep neural networks and the min-max can be
performed over their underlied parameters
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Cycle GANs

@ Instead of mapping a simple distribution to a complex one, we map a
complex to another complex and enforce a cycle consistency

.\—/. L(G,Dy) = Ey log (Dy(y)) + Ex log (1 — Dy(G(x)))

i B L£(F. D) — Exlog (Dx(x) + Ev log (1 - Dx(F)
B c..(F.0) = ExlF(600) - I+ EvIGEEY)) -yl

@ We solve the following min-max game

rp’lg DT?B(Y L(G,Dy) + L(F,Dx) + L¢y(F, G)
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Cycle GANs

@ See this video as an example of what can be done with cycle-GANs

Summer = Winter

Monet T Photos Zebras > Horses

Failure Case
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The End
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