
IFI 9000 Analytics Methods
More on Deep Learning and Generative Adversarial

Networks

by Houping Xiao

Spring 2021

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 1 / 45

Quick Review: Architecture of Neural Networks

A neural network consists of a sequence of multi-output linear units
followed by nonlinear activations

y1 = σ1(W1x + b1)

y2 = σ2(W2y1 + b2)

...

yL = σL(WLyL−1 + bL)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 2 / 45

Quick Review: Gradient Descent

Recall when we had N training samples (x (1), y (1)), · · · , (x (N), y (N))
our fitting objective was in one of the forms:

min
p

1

N

N∑
n=1

||y (n)−Mp

(
x (n)

)
||2; min

p

1

N

N∑
n=1

H
(
y (n),Mp

(
x (n)

))
Here p is the hyper parameter set: W1, · · · ,WL,b1, · · · ,bL

As a result:

C(p) =
1

N
Cn(p)→5C(p) =

1

N
5 Cn(p)

Gradient descent with learning rate η and momentum γ:

θk+1 = γθk + η5 C(pk)

pk+1 = pk − θk+1

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 3 / 45

Back propagation

This is another terminology that you probably hear a lot in deep
learning

Recall that you had to calculate the derivative with respect to each
sample and each sample function is a complicated nested function,
e.g.,

Cn =
∣∣∣∣∣∣y (n) − fL(fL−1(fL−2(1(x) · · ·)))

∣∣∣∣∣∣2 , , fl(z) = σl(Wlz + bl)

Back propagation is simply the application of the chain rule to
calculate the derivative of nested functions like Cn in terms of all the
unknown parameters W1, · · · ,WL,b1, · · · ,bL

Since the actual story goes through a lot of indexing complications,
let me explain things via a simple example

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 4 / 45

Back propagation, chain rule simple example

Find the derivative of the following function at w = 2:

f (w) = (sin(w2 + 1))2

Solution: Notice that

f = g1(g2(g3(w))); g1(g2) = g2, g2(g3) = sin(g3), g3(w) = w2 + 1

and use the chain rule

∂f

∂w
=
∂g1

∂w
=
∂g1

∂g2

∂g2

∂g3

∂g3

∂w
= 2 sin(5)× cos(5)× 4

Some useful videos about back propagation:

https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 5 / 45

https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8

Back propagation

Use chain rule to derive

∂Ci
∂βk0,m0

,
∂Ci

∂αm0,p0

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 6 / 45

Back propagation

Last layer sensitivity:

∂Ci
∂βk0,m0

= ∂Ci
∂zi,k0

∂zi,k0
∂βk0,m0

= 2(σz(β>k0
yi)− z

′
i ,k0

)σ
′
z(β>k0

yi)yi ,m0

= δi ,k0yi ,m0

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 7 / 45

Back propagation

Other layers sensitivity:

∂Ci
∂αk0,m0

=
∑K

k=1
∂Ci
∂zi,k

∂zi,k
∂yi,m0

∂yi,m0
∂αk0,m0

=
∑K

k=1 2(σz(β>k yi)− z
′
i ,k)σ

′
z(β>k yi)βk,m0σ

′
y (α>m0

xi)xi ,p0

= σ
′
y (α>m0

xi)
(∑K

k=1 δi ,kβk,m0

)
xi ,p0 = δ̂i ,m0xi ,p0

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 8 / 45

Sensitivity summary:

∂Ci
∂βk0,m0

= δi ,k0yi ,m0 ,
∂Ci

∂αm0,p0

= δ̂i ,m0xi ,p0

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 9 / 45

Using a validation set to control the minimization

As you observed in the previous slides gradient descent gradually
decreases the RSS (or cross entropy cost) to find a minimizer

One way to avoid over-fitting, is to use a “validation set”,
independent of the training set and stop the gradient descent
iterations when the validation error starts to increase

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 10 / 45

Regularization of neural networks to avoid overfitting

Similar to linear models there are variety of techniques to avoid
over-fitting in neural networks

L2 regularizers (similar to Ridge)
L1 regularizers (Similar to LASSO)
Dropout

See video: https://www.youtube.com/watch?v=ARq74QuavAo
See papers: Paper 1

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 11 / 45

https://www.youtube.com/watch?v=ARq74QuavAo
https://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

Convolutional neural networks

Deep learning has shown a lot of promise in classifying images

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 12 / 45

Linear filtering and images

Convolution is a linear operator widely used in image and signal
processing

Depending on the type of filter we pick for K the output image can
have different properties (blurred, sharpened, edges detected, etc)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 13 / 45

Examples of image convolution with different kernels

If the filters are selected wisely, their output can be considered as
alternative features to pixels

In a CNN, we let the neural network learn these filters! In other
words, CNN wisely chooses the right features that are the best for
prediction

For color images (RGB) we can have 3D filters each filter applicable
to one channel

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 14 / 45

Convolutional layers

We can define as many 2D or 3D convolutional filters (here 3 3D
filters of size 3× 3× 3)

The total number of parameters that need to be learnt for this layer
is going to be 3× (27 + 1)

An input image of 6× 6× 3 is mapped to a tensor of size 4× 4× 3

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 15 / 45

Max pooling

Is another operation that allows us to reduce the input size by taking
a max operation over smaller windows across the image

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 16 / 45

Recurrent neural networks

While CNNs work quite promising for images, they may not be the
best modeling tools for other data sets such as time series data

For temporal, or time-series data and stream inputs (e.g., text
streams), recurrent neural networks (RNNs) are of major attention

We assume a sequence of data is streamed as N time instances, and
mapped to a sequence of response (here of the same length).

For now let’s assume that the input and output have similar lengths

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 17 / 45

RNN: governing equations

Remember in standard neural network the output of the hidden layer
was in the form h = σ(Wxx + b)

In RNNs the input is a stream x(t) and we have another coefficient
matrix that makes the current hidden output dependent on the
previous one:

h(t) = σ

(
W
(

h(t−1)

x (t−1)

)
+ b

)
,

y (t) = σ
(
W̃ h(t) + b̃

)
, t = 1, · · · ,N

Training cost per sample: L(y , ŷ) =
∑N

t=1 L
(
y (t), ŷ (t)

)
H. Xiao (IFI@GSU) Dl & GAN Spring 2021 18 / 45

Types of RNN and applications

The following architecture is many-to-many, with the input and
output having the same length

Application example is named-entity recognition (classify
unstructured text into predefined classes)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 19 / 45

Types of RNN and applications

The following architecture is many-to-one

Application example is sentiment classification (review systems,
scoring systems)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 20 / 45

Types of RNN and applications

The following architecture is one-to-one

This is somehow equivalent to traditional one-layer network
(real-time mapping)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 21 / 45

Types of RNN and applications

The following architecture is one-to-many

Application example is music generation

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 22 / 45

Types of RNN and applications

The following architecture is many-to-many, with the input and
output having different lengths

Application example is machine translation

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 23 / 45

Deep RNNs

All the architectures we explained so far can become deep and
layered

In practice we do not need very deep RNNs (unlike standard DNNs
which can be very deep)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 24 / 45

Deep RNNs

One hot encoding is normally used to convert a vocabulary into
digital inputs

It is normally easier and more robust to do the one hot encoding with
the words other than letters

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 25 / 45

Problems with standard RNNs and remedies

Hard to train and vanishing gradient

Difficulty accessing information from long time ago

Two main variants of RNNs:

Long Short-Term Memory (LSTM)
Gated Recurrent Units (GRUs)

To learn more and see some cool applications see:
https://www.youtube.com/watch?v=6niqTuYFZLQt=1850s

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 26 / 45

https://www.youtube.com/watch?v=6niqTuYFZLQ&t=1850s

Deep RNNs

Is the most recent breakthrough in machine learning started in 2015

Basically once we pass enough samples to a GAN network, it starts
to learn how to generate similar samples

To learn more and see some interesting applications see:
This Video, or This Video
H. Xiao (IFI@GSU) Dl & GAN Spring 2021 27 / 45

https://www.youtube.com/watch?v=XOxxPcy5Gr4&t=80s
https://www.youtube.com/watch?v=ehD3C60i6lw

Generative Adversarial Networks

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 28 / 45

Introduction to GANs

GAN is an unsupervised learning technique which allows us to model
complex distributions and sample from them

Examples of these complex distributions are the space of natural
images, such as people’s images

Intuitively, GANs train a neural network in an “adversarial way” to
map a simple distribution to the target complex distribution

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 29 / 45

Basics of GANs

Simple distributions such as standard (multivariate) normal can be
mapped to more complex distributions once passed through a
function

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 30 / 45

Basics of GANs

This trick can be applied to complex distributions such as space of
natural images (e.g., celebrities)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 31 / 45

Basics of GANs

Can we train a neural network Gθ(z) that learns to perform this
mapping? (this is essentially what GANs do)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 32 / 45

Basics of GANs

GANs do this task in an adversarial way

To understand this better, let’s start with a quick overview of logistic
regression

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 33 / 45

Basics of GANs: logistic regression overview

In binary logistic regression, we have a set of training samples
(x1, y1), · · · , (xN , yN), where xi ∈ Rp and yi ∈ {0, 1}
In logistic regression we assume

p(xi) = sigmoid(w>xi) =
exp(w>xi)

1 + exp(w>xi)
= P(y = 1|xi) = 1− P(y = 0|xi)

We aim to maximize the MLE cost:

P(Y1 = y1, · · · ,YN = yn|x1, · · · , xN ,w) =
∏N

i=1 P(Yi = yi |xi ,w)
=
∏

i :yi=1 p(xi)
∏

i :yi=0(1− p(xi))

=
∏N

i=1 p(xi)yi (1− p(xi))1−yi

After applying log, and normalization, we aim to maximize

1

N

N∑
i=1

yi log(p(xi)) + (1− yi) log(1− p(xi))

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 34 / 45

Basics of GANs: logistic regression overview

In a nutshell, in logistic regression we assume

p(xi) = sigmoid(w>xi)

and end up maximizing the objective

1

N

N∑
i=1

yi log(p(xi)) + (1− yi) log(1− p(xi))

In order to make our classifier stronger, we can use a DNN for p(xi),
i.e.,

p(xi) = Dθ(xi)

and end up doing the maximization

1

N

N∑
i=1

yi log(Dθ(xi)) + (1− yi) log(1− Dθ(xi))

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 35 / 45

Basics of GANs

We ended up with

1

N

N∑
i=1

yi log(Dθ(xi)) + (1− yi) log(1− Dθ(xi))

Considering xi the samples with label 1, and x̃i , the samples with
label 0,

in a more closed-form representation we have:

max
θ

Ex log(Dθ(x)) + Ex̃ log(1− Dθ(x̃)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 36 / 45

Basics of GANs

We would like x̃ to be generated by G (z), so we setup a competition
between Generator and Discremenator

min
θg

max
θd

Ex log(Dθd (x)) + Ex̃ log(1− Dθd (Gθg (z))

Generator tries to fool the discremenator, and discremenator tries to
identify “fake” samples
H. Xiao (IFI@GSU) Dl & GAN Spring 2021 37 / 45

Basics of GANs

The optimization goes through several gradient ascent steps to
update the discremenator, followed by a gradient descent step to
update the generator

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 38 / 45

Well-known issues with GANs

Watch this video to find out what GANs can do

Some well-known problems with GANs

divergence
vanishing gradient
unstable gradient
mode collapse

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 39 / 45

https://www.youtube.com/watch?v=XOxxPcy5Gr4&t=80s

Wasserstein GANs

Is a more robust scheme compared to conventional GANs, derived
based on the sitance between distributions

DW (p, q) = inf
π∈Π(p,q)

E(x ,y)∼π||x − y ||

Π(p, q) is the space of all joint distributions with marginals p and q
In discrete case, this program can be written as an LP
(π(xi , yj)→ πi ,j , ci ,j = ||xi − yj ||

min
πi,j≥0

∑
i ,j

ci ,jπi ,j s.t.
∑
i

πi ,j = qj ,
∑
j

πi ,j = pi

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 40 / 45

Wasserstein GANs

In discrete case, this program can be written as an LP
(π(xi , yj)→ πi ,j , ci ,j = ||xi − yj ||

min
πi,j≥0

∑
i ,j

ci ,jπi ,j s.t.
∑
i

πi ,j = qj ,
∑
j

πi ,j = pi

Using LP duality we can rewrite Dw (p, q) as

Dw (p, q) = max
γi ,λj

∑
i

γipi +
∑
j

λjqj s.t.γi + λj ≤ cij

When c is a proper distance, we must have λ = −γ and therefore in
continuum:

Dw (p, q) = sup
||f ||L≤1

Ex∼pf (x)− Ey∼pf (y)

1-Lipschitz function: ||f ||L ≤ 1 equivalent to |f (x)− f (y)| ≤ ||x − y ||
H. Xiao (IFI@GSU) Dl & GAN Spring 2021 41 / 45

Wasserstein GANs

We showed that the following maximization over the space of
1-Lipschitz functions gives the distance between two distributions

Dw (p, q) = sup
||f ||L≤1

Ex∼pf (x)− Ey∼pf (y)

So we can conveniently modify this to a min-max game to formulate
the so-called Wasserstein GANs:

min
G

max
||f ||L≤1

EX f (x)− EZ f (G (z))

Here, f and G can be deep neural networks and the min-max can be
performed over their underlied parameters

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 42 / 45

Cycle GANs

Instead of mapping a simple distribution to a complex one, we map a
complex to another complex and enforce a cycle consistency

We solve the following min-max game

min
F ,G

max
DX ,DY

L(G ,DY) + L(F ,DX) + Lcyc(F ,G)

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 43 / 45

Cycle GANs

See this video as an example of what can be done with cycle-GANs

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 44 / 45

https://www.youtube.com/watch?v=ehD3C60i6lw

The End

H. Xiao (IFI@GSU) Dl & GAN Spring 2021 45 / 45

