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Introduction
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Computer vision is everywhere
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Image representation is the first step

H. Xiao (IFI@GSU) Deep Learning in CV Spring 2021 4 / 61



Image representation: from gray-scale images to colorful
images
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Image representation: a summary

An image can be represented as a matrix or a tensor (a higher order
matrix, usually 3-d in here) of pixel values
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Image processing: image filtering and image warping

Image filtering: change the range, i.e. the pixel values, of an image
such that the colors of the image are changed without changing the
pixel positions

Image warping: change the domain, i.e. the pixel positions, of an
image, where points are mapped to other positions without changing
the colors
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Image filtering: change the pixel values

An example using “median filter”, replacing each entry with the
median of neighboring entries

used to remove noise from an image or signal

preserves edges while removing noise
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Image filtering: moving average

A more smooth image with sharp features removed

replace each pixel with the average pixel value of it and its
neighborhood window of adjacent pixels
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Image filtering: image segmentation filters

Partition an image into regions where the pixels have similar
attributes, so the image is represented in a more simplified way

identify objects and boundaries more easily
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2d convolution filter: works on a input and a kernel image

Filters can be expressed in a principal manner using 2d convolution,
such as smoothing and sharpening images, and detecting edges
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Sharpening filter

Original image - smoothed image = details

Original image + details = sharpened image
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An application: edge detection
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Image warping (scaling)

Digitally manipulating an image, such as resizing the image
(subsampling)

any shapes portrayed in the image have been significantly distored
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Translation

Shifting of an object location

transformation matrix: M =

[
1 0 tx
0 1 ty

]
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Rotation

Rotation θ can be achieved by the transofrmation of the form

M =

[
cos θ − sin θ
sin θ cos θ

]
or M =

[
α β (1− α)x − βy
−β α βx + (1− α)y

]
, where

α = scale ∗ cos θ, β = scale ∗ sin θ and (x , y) is the center
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Affine and perspective transformation

Affine: similar to rotation, all parallel lines in the original image will
still be parallel

Perspective: zoom out for a specific range defind by four points
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Image warping

Demo on image processing; check the python code!
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Filters: a motivating example of edge detection

vertical edge detection
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More edge detection filters
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More edge detection filters
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Padding

Shrinkage output

through away information from edge

Options: Valid and Same padding

Valid: no padding, and output (n − f + 1)× (n − f + 1)

Same: output feature map stays the same size as the input image
(feature map), and output (n + 2p − f + 1)× (n + 2p − f + 1)

f usually odd
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Stride

output: (n+2p−f
s + 1)× (n+2p−f

s + 1)
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Output dimension after a convolutional layer
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Convolutions on RGB (colorful) images
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Convolutions on RGB (colorful) images

Number of parameters in one layer

consider one convolutional layer with 10 filters that are 333, how many
parameters we need to train?
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Notations

H. Xiao (IFI@GSU) Deep Learning in CV Spring 2021 27 / 61



An example of ConvNet

Convolution (ConV), complicated

Pooling (Pool), easy

Fully Connected (FC), easy
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Pooling layers (Pool)

reduce the size of image representation, speed up the computation,
and robust feature detection

No parameters to learn, output bn+2p−f
s + 1c × bn+2p−f

s + 1c
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An example
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Why convolutions
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Why convolutions
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Convolutions enable parameter sharing

A feature detector (such as the vertical edge detector) that’s useful
in one part of the image is probably useful in another part of the
image

The same patterns appear in different regions
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Convolutions enable sparsity of connections

in each layer, each output value depends only on a small number of
inputs

Sparsity of connections: ConV v.s. FC
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Benefits of using ConV
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Benefits of using ConV
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Why pooling?

Subsampling the pixels will not change the object
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The whole CNN architecture
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The whole CNN architecture use Keras
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CNN for speech
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CNN for text

H. Xiao (IFI@GSU) Deep Learning in CV Spring 2021 41 / 61



Classic Networks
LeNet-5, AlexNet, VGG, GoogleNet, ResNet
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LeNet-5
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AlexNet

First large scale CNN to do well in image classification!
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AlexNet

Input: 227×227×3 images; First layer (Conv1): 96:11×11 filters with
stride = 4

Q: what is the output volume size? 55×55×96
Q: how many parameters? (11×11×3)×96

Second layer (MaxPool1): 3×3 filters with stride = 2
Q: what is the output volume size? 27×27×96
Q: how many parameters? 0

Details:
First use of ReLU; Used norm layers (not common anymore); Heavy
data augmentation; Dropout=0.5; Batch size = 128; Sgd momentum
= 0.9; Learning rate 0.01, reduced by 10 manually when val accuracy
plateaus; Le weight decay 0.0005; 7 cnn ensemble, accuracy improved
by around 3
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ImageNet large scale visual recognition challenge winners

ZFNet has the same structure with AlexNet, but

Conv1: 11×11 filers with stride 4 → 7×7 filers with stride 2
Conv3, 4, 5: number of filers 384, 384, 256 → 512, 1024, 512

accuracy improved by 4.7%
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ImageNet large scale visual recognition challenge winners
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VGG-16
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GoogleNet
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Novelty of GoogleNet: Inception Module
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Novelty of GoogleNet: Inception Module
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GoogleNet
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ImageNet large scale visual recognition challenge winners
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ResNets
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Residual Network

Very deep neural network is difficult to train because of vanishing and
exploding gradients

ResNet is able to train very deep neural network

56-layer model performs worse on both training and test error

The deeper model performs worse, but it’s not caused by overfitting,
more because of optimization issue
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Residual block
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Why ResNets work?

H. Xiao (IFI@GSU) Deep Learning in CV Spring 2021 57 / 61



Why ResNets work?
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ResNets

stack residual blocks; every residual block has 2: 3x3 ConV layers

periodically, docule number of filters and downsample spatially using
stride 2

additional ConV layer at the beginning and no FC layers at the end
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ResNets
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The End
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